Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 14(1): 20208, 2024 08 30.
Article in English | MEDLINE | ID: mdl-39215072

ABSTRACT

The objectives of this study were to investigate the composition of gut microbiota and its relationship with bone loss in the Uyghur osteopenia population, identify potential disease-related taxa and collect information for the prevention and treatment of osteopenia in different people by regulating gut microbiota. We selected Uyghur residents, measured their heel BMD, collected faeces and general information, grouped them by BMD level, obtained faecal 16S rRNA sequences, and compared and analysed the differences between the groups. This study showed that the numbers of OTUs and species in the gut microbiota in the osteopenia group were higher than those in the control. At the phylum level, Erysipelotrichia was more abundant in the osteopenia group. At the genus level, Phascolarctobacterium was less abundant, and Ruminiclostridium_5 was more abundant in the osteopenia group compared to the control. Phascolarctobacterium and Z-score were positively correlated, and Ruminiclostridium_5 was negatively correlated with T and Z score. The different composition of the gut microbiota in Uyghur osteopenia patients and controls found in this study fills a knowledge gap in this ethnic group. The relationship between Uyghur osteopenia and BMD-associated bacterial genera deserves further exploration.


Subject(s)
Bone Diseases, Metabolic , Feces , Gastrointestinal Microbiome , RNA, Ribosomal, 16S , Humans , Gastrointestinal Microbiome/genetics , Bone Diseases, Metabolic/microbiology , Middle Aged , Female , Male , China/epidemiology , RNA, Ribosomal, 16S/genetics , Feces/microbiology , Bone Density , Adult , Aged , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification
2.
Exp Gerontol ; 187: 112376, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38331300

ABSTRACT

BACKGROUND: Research on the gut microbiota has emerged as a new direction for understanding pathophysiologic changes in diseases associated with aging, such as sarcopenia. Several studies have shown that there are differences in the gut microbiota between individuals with sarcopenia and without sarcopenia. However, these differences are not consistent across regions and ethnic groups, and additional research is needed. METHODS: In this study, we collected fresh fecal samples from 31 Uyghur individuals with sarcopenia and 31 healthy controls. We used 16S rRNA sequencing to obtain fecal base sequences and analyzed the diversity, composition and function of the gut microbiota. RESULTS: There was no significant difference in alpha diversity between the sarcopenia group and the healthy control group (P > 0.05). There was a significant difference in beta diversity between the groups (P < 0.05). In the sarcopenia group, the abundances of Alloprevotella, un_f_Prevotellaceae, Anaerovibrio, Prevotellaceae_NK3B31_group, Mitsuokella, Prevotella and Allisonella were lower than those in the heathy control group, and the abundances of Flavobacteriales, Flavobacteriaceae, Catenibacterium, Romboutsia, Erysipelotrichaceae_UCG-003, GCA-900066575, Lachnospiraceae_FCS020_group, and un_f_Flavobacteriaceae were higher than those in the heathy control group. Linear discriminant analysis effect size (LEfSe) revealed that the microbial species in the control group that were significantly different from those in the sarcopenia group were concentrated in the genus Alloprevotella, while the species in the sarcopenia group were concentrated in the genus Catenibacterium. Functional prediction analysis revealed that D-alanine, glycine, serine, and threonine metabolism and transcription machinery, among others, were enriched in the sarcopenia group, which indicated that metabolic pathways related to amino acid metabolism and nutrient transport may be regulated to varying degrees in the pathophysiological context of sarcopenia. CONCLUSIONS: There were significant differences in the composition and function of the gut microbiota between Xinjiang Uyghur sarcopenia individuals and healthy individuals. These findings might aid in the development of probiotics or microbial-based therapies for sarcopenia in Uyhur individuals.


Subject(s)
Gastrointestinal Microbiome , Sarcopenia , Humans , RNA, Ribosomal, 16S/genetics , Aging , Bacteroidetes
SELECTION OF CITATIONS
SEARCH DETAIL