Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Front Med (Lausanne) ; 10: 1128557, 2023.
Article in English | MEDLINE | ID: mdl-37305116

ABSTRACT

Duchenne muscular dystrophy is a rare and lethal hereditary disease responsible for progressive muscle wasting due to mutations in the DMD gene. We used the CRISPR-Cas9 Prime editing technology to develop different strategies to correct frameshift mutations in DMD gene carrying the deletion of exon 52 or exons 45 to 52. With optimized epegRNAs, we were able to induce the specific substitution of the GT nucleotides of the splice donor site of exon 53 in up to 32% of HEK293T cells and 28% of patient myoblasts. We also achieved up to 44% and 29% deletion of the G nucleotide of the GT splice site of exon 53, as well as inserted 17% and 5.5% GGG between the GT splice donor site of exon 51 in HEK293T cells and human myoblasts, respectively. The modification of the splice donor site for exon 51 and exon 53 provoke their skipping and allowed exon 50 to connect to exon 53 and allowed exon 44 to connect to exon 54, respectively. These corrections restored the expression of dystrophin as demonstrated by western blot. Thus, Prime editing was used to induce specific substitutions, insertions and deletions in the splice donor sites for exons 51 and 53 to correct the frameshift mutations in DMD gene carrying deletions of exon 52 and exons 45 to 52, respectively.

2.
Cells ; 13(1)2023 12 22.
Article in English | MEDLINE | ID: mdl-38201236

ABSTRACT

We report the first correction from prime editing a mutation in the RYR1 gene, paving the way to gene therapies for RYR1-related myopathies. The RYR1 gene codes for a calcium channel named Ryanodine receptor 1, which is expressed in skeletal muscle fibers. The failure of this channel causes muscle weakness in patients, which leads to motor disabilities. Currently, there are no effective treatments for these diseases, which are mainly caused by point mutations. Prime editing allows for the modification of precise nucleotides in the DNA. Our results showed a 59% correction rate of the T4709M mutation in the RYR1 gene in human myoblasts by RNA delivery of the prime editing components. It is to be noted that T4709M is recessive and, thus, persons having a heterozygous mutation are healthy. These results are the first demonstration that correcting mutations in the RYR1 gene is possible.


Subject(s)
Muscular Diseases , Ryanodine Receptor Calcium Release Channel , Humans , Muscle Weakness , Mutation/genetics , Point Mutation , Ryanodine Receptor Calcium Release Channel/genetics
3.
Mol Ther Nucleic Acids ; 30: 272-285, 2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36320324

ABSTRACT

Duchenne muscular dystrophy is a severe debilitating genetic disease caused by different mutations in the DMD gene leading to the absence of dystrophin protein under the sarcolemma. We used CRISPR-Cas9 prime editing technology for correction of the c.8713C>T mutation in the DMD gene and tested different variations of reverse transcription template (RTT) sequences. We increased by 3.8-fold the editing percentage of the target nucleotide located at +13. A modification of the protospacer adjacent motif sequence (located at +6) and a silent mutation (located at +9) were also simultaneously added to the target sequence modification. We observed significant differences in editing efficiency in interconversion of different nucleotides and the distance between the target, the nicking site, and the additional mutations. We achieved 22% modifications in myoblasts of a DMD patient, which led to dystrophin expression detected by western blot in the myotubes that they formed. RTT optimization permitted us to improve the prime editing of a point mutation located at +13 nucleotides from the nick site to restore dystrophin protein.

4.
Int J Mol Sci ; 23(11)2022 May 31.
Article in English | MEDLINE | ID: mdl-35682838

ABSTRACT

The Prime editing technique derived from the CRISPR/Cas9 discovery permits the modification of selected nucleotides in a specific gene. We used it to insert specific point mutations in exons 9, 20, 35, 43, 55 and 61 of the Duchenne Muscular Dystrophy (DMD) gene coding for the dystrophin protein, which is absent in DMD patients. Up to 11% and 21% desired mutations of the DMD gene in HEK293T cells were obtained with the PRIME Editor 2 (PE2) and PE3, respectively. Three repeated treatments increased the percentage of specific mutations with PE2 to 16%. An additional mutation in the protospacer adjacent motif (PAM) sequence improved the PE3 result to 38% after a single treatment. We also carried out the correction of c.428 G>A point mutation in exon 6 of the DMD gene in a patient myoblast. Myoblast electroporation showed up to 8% and 28% modifications, respectively, for one and three repeated treatments using the PE3 system. The myoblast correction led to dystrophin expression in myotubes detected by Western blot. Thus, prime editing can be used for the correction of point mutations in the DMD gene.


Subject(s)
Dystrophin , Muscular Dystrophy, Duchenne , CRISPR-Cas Systems/genetics , Dystrophin/genetics , Dystrophin/metabolism , Gene Editing/methods , HEK293 Cells , Humans , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/therapy , Mutation
5.
Mol Ther ; 30(7): 2429-2442, 2022 07 06.
Article in English | MEDLINE | ID: mdl-35619556

ABSTRACT

Extracellular vesicles (EVs) mediate intercellular biomolecule exchanges in the body, making them promising delivery vehicles for therapeutic cargo. Genetic engineering by the CRISPR system is an interesting therapeutic avenue for genetic diseases such as Duchenne muscular dystrophy (DMD). We developed a simple method for loading EVs with CRISPR ribonucleoproteins (RNPs) consisting of SpCas9 proteins and guide RNAs (gRNAs). EVs were first purified from human or mouse serum using ultrafiltration and size-exclusion chromatography. Using protein transfectant to load RNPs into serum EVs, we showed that EVs are good carriers of RNPs in vitro and restored the expression of the tdTomato fluorescent protein in muscle fibers of Ai9 mice. EVs carrying RNPs targeting introns 22 and 24 of the DMD gene were also injected into muscles of mdx mice having a non-sense mutation in exon 23. Up to 19% of the cDNA extracted from treated mdx mice had the intended deletion of exons 23 and 24, allowing dystrophin expression in muscle fibers. RNPs alone, without EVs, were inefficient in generating detectable deletions in mouse muscles. This method opens new opportunities for rapid and safe delivery of CRISPR components to treat DMD.


Subject(s)
Extracellular Vesicles , Muscular Dystrophy, Duchenne , Animals , CRISPR-Cas Systems , Disease Models, Animal , Dystrophin/genetics , Dystrophin/metabolism , Extracellular Vesicles/metabolism , Gene Editing/methods , Genetic Therapy/methods , Mice , Mice, Inbred mdx , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/therapy , Ribonucleoproteins/metabolism
6.
CRISPR J ; 5(1): 109-122, 2022 02.
Article in English | MEDLINE | ID: mdl-35133877

ABSTRACT

Alzheimer's disease (AD) is the result of abnormal processing of the amyloid precursor protein (APP) by ß-secretase and γ-secretase, which leads to the formation of toxic ß-amyloid peptides. The toxic ß-amyloid peptides induce neuron death, memory problems, and AD development. Several APP mutations increase the risk of developing early-onset AD. However, the A673T mutation identified in the Icelandic population prevents AD development by reducing the cleavage of APP by ß-secretase. In this study, we inserted the A673T mutation in human cells using the CRISPR prime editing (PE) technique. Repeated PE treatments resulted in the insertion of the A673T mutation in up to 49.2% of APP genes when a second nick was induced in the other DNA strand. When the protospacer adjacent motif used for PE was also mutated, up to 68.9% of the APP genes contained the protective A673T mutation. PE is a promising approach to introduce the A673T mutation precisely without mutating nearby nucleotides.


Subject(s)
Alzheimer Disease , Alzheimer Disease/genetics , Alzheimer Disease/prevention & control , CRISPR-Cas Systems/genetics , Gene Editing , Humans , Iceland , Mutation
7.
Mol Ther Nucleic Acids ; 24: 253-263, 2021 Jun 04.
Article in English | MEDLINE | ID: mdl-33815938

ABSTRACT

The amyloid precursor protein (APP) is a transmembrane protein mostly found in neurons. Cleavage of this protein by ß-secretase can lead to the formation of amyloid-ß (Aß) peptide plaque, which leads to Alzheimer's disease. Genomic analysis of an Icelandic population that did not show symptoms of Alzheimer's at an advanced age led to the discovery of the A673T mutation. This mutation can reduce ß-secretase cleavage by 40%. We hypothesized that the insertion of this mutation in patients' neurons could be an effective and sustainable method of slowing down or even stopping the progression of Alzheimer's disease. We modified the APP gene in HEK293T cells and in SH-SY5Y neuroblastoma using a Cas9 nickase (Cas9n)-deaminase enzyme to convert the alanine codon to a threonine. Several Cas9n-deaminase variants were tested to compare their efficiency of conversion. The results were characterized and quantified by deep sequencing. We successfully introduced the A673T mutation in 53% of HEK293T cells alongside a new mutation (E674K), which seemed to further reduce Aß peptide accumulation. Our approach aimed to provide a new strategy for the treatment of Alzheimer's and in so doing, demonstrate the capacity of base editing techniques for treating genetic diseases.

8.
PLoS One ; 15(12): e0237122, 2020.
Article in English | MEDLINE | ID: mdl-33370284

ABSTRACT

The deposition of Aß plaques in the brain leads to the onset and development of Alzheimer's disease. The Amyloid precursor protein (APP) is cleaved by α-secretase (non-amyloidogenic processing of APP), however increased cleavage by ß-secretase (BACE1) leads to the accumulation of Aß peptides, which forms plaques. APP mutations mapping to exons 16 and 17 favor plaque accumulation and cause Familial Alzheimer Disease (FAD). However, a variant of the APP gene (A673T) originally found in an Icelandic population reduces BACE1 cleavage by 40%. A series of plasmids containing the APP gene, each with one of 29 different FAD mutations mapping to exon 16 and exon 17 was created. These plasmids were then replicated with the addition of the A673T mutation. Combined these formed the library of plasmids that was used in this study. The plasmids were transfected in neuroblastomas to assess the effect of this mutation on Aß peptide production. The production of Aß peptides was decreased for some FAD mutations due to the presence of the co-dominant A673T mutation. The reduction of Aß peptide concentrations for the London mutation (V717I) even reached the same level as for A673T control in SH-SY5Y cells. These preliminary results suggest that the insertion of A673T in APP genes containing FAD mutations might confer a clinical benefit in preventing or delaying the onset of some FADs.


Subject(s)
Alzheimer Disease/genetics , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Alzheimer Disease/metabolism , Cell Line, Tumor , Humans , Mutation , Plaque, Amyloid/metabolism
9.
Mol Ther ; 26(11): 2604-2616, 2018 11 07.
Article in English | MEDLINE | ID: mdl-30195724

ABSTRACT

Duchenne muscular dystrophy (DMD), a severe hereditary disease affecting 1 in 3,500 boys, mainly results from the deletion of exon(s), leading to a reading frameshift of the DMD gene that abrogates dystrophin protein synthesis. Pairs of sgRNAs for the Cas9 of Staphylococcus aureus were meticulously chosen to restore a normal reading frame and also produce a dystrophin protein with normally phased spectrin-like repeats (SLRs), which is not usually obtained by skipping or by deletion of complete exons. This can, however, be obtained in rare instances where the exon and intron borders of the beginning and the end of the complete deletion (patient deletion plus CRISPR-induced deletion) are at similar positions in the SLR. We used pairs of sgRNAs targeting exons 47 and 58, and a normal reading frame was restored in myoblasts derived from muscle biopsies of 4 DMD patients with different exon deletions. Restoration of the DMD reading frame and restoration of dystrophin expression were also obtained in vivo in the heart of the del52hDMD/mdx. Our results provide a proof of principle that SaCas9 could be used to edit the human DMD gene and could be considered for further development of a therapy for DMD.


Subject(s)
CRISPR-Cas Systems/genetics , Dystrophin/genetics , Genetic Therapy , Muscular Dystrophy, Duchenne/genetics , Animals , CRISPR-Associated Protein 9/genetics , Disease Models, Animal , Dystrophin/therapeutic use , Exons/genetics , Frameshift Mutation/genetics , Gene Editing , Gene Expression Regulation , Humans , Mice , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Dystrophy, Duchenne/pathology , Muscular Dystrophy, Duchenne/therapy , Myoblasts , Sequence Deletion , Staphylococcus aureus/enzymology
10.
Mol Ther Nucleic Acids ; 12: 19-32, 2018 Sep 07.
Article in English | MEDLINE | ID: mdl-30195758

ABSTRACT

Frataxin gene (FXN) expression is reduced in Friedreich's ataxia patients due to an increase in the number of GAA trinucleotides in intron 1. The frataxin protein, encoded by that gene, plays an important role in mitochondria's iron metabolism. Platinum TALE (plTALE) proteins targeting the regulatory region of the FXN gene, fused with a transcriptional activator (TA) such as VP64 or P300, were used to increase the expression of that gene. Many effectors, plTALEVP64, plTALEp300, and plTALESunTag, targeting 14 sequences of the FXN gene promoter or intron 1 were produced. This permitted selection of 3 plTALEVP64s and 2 plTALESunTag that increased FXN gene expression by up to 19-fold in different Friedreich ataxia (FRDA) primary fibroblasts. Adeno-associated viruses were used to deliver the best effectors to the YG8R mouse model to validate their efficiencies in vivo. Our results showed that these selected plTALEVP64s or plTALESunTag induced transcriptional activity of the endogenous FXN gene as well as expression of the frataxin protein in YG8R mouse heart by 10-fold and in skeletal muscles by up to 35-fold. The aconitase activity was positively modulated by the frataxin level in mitochondria, and it was, thus, increased in vitro and in vivo by the increased frataxin expression.

11.
Methods Mol Biol ; 1687: 267-283, 2018.
Article in English | MEDLINE | ID: mdl-29067670

ABSTRACT

The discovery of the CRISPR-Cas9 system raises hope for the treatment of many genetic disorders. We describe here an approach based on the use of a pair of single guide RNAs to form a hybrid exon that does not only restore the dystrophin gene reading frame but also results in the production of a dystrophin protein with an adequate structure of the central rod-domain, with a correct spectrin-like repeat. The therapeutic approach described here involved DMD patient cells having a deletion of exons 51-53 of the DMD gene.


Subject(s)
CRISPR-Cas Systems/genetics , Dystrophin/genetics , Genetic Therapy/methods , Muscular Dystrophy, Duchenne/therapy , Exons , Humans , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/pathology , Mutation , RNA, Guide, Kinetoplastida/genetics
12.
Mol Ther Nucleic Acids ; 6: 68-79, 2017 Mar 17.
Article in English | MEDLINE | ID: mdl-28325301

ABSTRACT

Laminin-111 protein complex links the extracellular matrix to integrin α7ß1 in sarcolemma, thus replacing in dystrophic muscles links normally insured by the dystrophin complex. Laminin-111 injection in mdx mouse stabilized sarcolemma, restored serum creatine kinase to wild-type levels, and protected muscles from exercised-induced damages. These results suggested that increased laminin-111 is a potential therapy for DMD. Laminin subunit beta 1 and laminin subunit gamma 1 are expressed in adult human muscle, but laminin subunit alpha 1 (LAMA1) gene is expressed only during embryogenesis. We thus developed an alternative method to laminin-111 protein repeated administration by inducing expression of the endogenous mouse Lama1 gene. This was done with the CRSPR/Cas9 system, i.e., by targeting the Lama1 promoter with one or several gRNAs and a dCas9 coupled with the VP160 transcription activation domain. Lama1 mRNA (qRT-PCR) and proteins (immunohistochemistry and western blot) were not detected in the control C2C12 myoblasts and in control muscles. However, significant expression was observed in cells transfected and in mouse muscles electroporated with plasmids coding for dCas9-VP160 and a gRNA. Larger synergic increases were observed by using two or three gRNAs. The increased Lama1 expression did not modify the expression of the α7 and ß1 integrins. Increased expression of Lama1 by the CRISPR/Cas9 system will have to be further investigated by systemic delivery of the CRISPR/Cas9 components to verify whether this could be a treatment for several myopathies.

14.
Mol Ther Nucleic Acids ; 5: e283, 2016 Jan 26.
Article in English | MEDLINE | ID: mdl-26812655

ABSTRACT

The CRISPR/Cas9 system is a great revolution in biology. This technology allows the modification of genes in vitro and in vivo in a wide variety of living organisms. In most Duchenne muscular dystrophy (DMD) patients, expression of dystrophin (DYS) protein is disrupted because exon deletions result in a frame shift. We present here the CRISPR-induced deletion (CinDel), a new promising genome-editing technology to correct the DMD gene. This strategy is based on the use of two gRNAs targeting specifically exons that precede and follow the patient deletion in the DMD gene. This pair of gRNAs induced a precise large additional deletion leading to fusion of the targeted exons. Using an adequate pair of gRNAs, the deletion of parts of these exons and the intron separating them restored the DMD reading frame in 62% of the hybrid exons in vitro in DMD myoblasts and in vivo in electroporated hDMD/mdx mice. Moreover, adequate pairs of gRNAs also restored the normal spectrin-like repeat of the dystrophin rod domain; such restoration is not obtained by exon skipping or deletion of complete exons. The expression of an internally deleted DYS protein was detected following the formation of myotubes by the unselected, treated DMD myoblasts. Given that CinDel induces permanent reparation of the DMD gene, this treatment would not have to be repeated as it is the case for exon skipping induced by oligonucleotides.

15.
Mol Ther Nucleic Acids ; 2: e68, 2013 Jan 29.
Article in English | MEDLINE | ID: mdl-23360951

ABSTRACT

Zinc finger nucleases (ZFN) can facilitate targeted gene addition to the genome while minimizing the risks of insertional mutagenesis. Here, we used a previously characterized ZFN pair targeting the chemokine (C-C motif) receptor 5 (CCR5) locus to introduce, as a proof of concept, the enhanced green fluorescent protein (eGFP) or the microdystrophin genes into human myoblasts. Using integrase-defective lentiviral vectors (IDLVs) and chimeric adenoviral vectors to transiently deliver template DNA and ZFN respectively, we achieved up to 40% targeted gene addition in human myoblasts. When the O(6)-methylguanine-DNA methyltransferase(P140K) gene was co-introduced with eGFP, the frequency of cells with targeted integration could be increased to over 90% after drug selection. Importantly, gene-targeted myoblasts retained their mitogenic activity and potential to form myotubes both in vitro and in vivo when injected into the tibialis anterior of immune-deficient mice. Altogether, our results could lead to the development of improved cell therapy transplantation protocols for muscular diseases.Molecular Therapy - Nucleic Acids (2013) 2, e68; doi:10.1038/mtna.2012.55; published online 29 January 2013.

16.
Mol Ther ; 20(11): 2153-67, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22990676

ABSTRACT

Human embryonic stem cells (hESCs) and human-induced pluripotent stem cells (hiPSCs) have an endless self-renewal capacity and can theoretically differentiate into all types of lineages. They thus represent an unlimited source of cells for therapies of regenerative diseases, such as Duchenne muscular dystrophy (DMD), and for tissue repair in specific medical fields. However, at the moment, the low number of efficient specific lineage differentiation protocols compromises their use in regenerative medicine. We developed a two-step procedure to differentiate hESCs and dystrophic hiPSCs in myogenic cells. The first step was a culture in a myogenic medium and the second step an infection with an adenovirus expressing the myogenic master gene MyoD. Following infection, the cells expressed several myogenic markers and formed abundant multinucleated myotubes in vitro. When transplanted in the muscle of Rag/mdx mice, these cells participated in muscle regeneration by fusing very well with existing muscle fibers. Our findings provide an effective method that will permit to use hESCs or hiPSCs for preclinical studies in muscle repair.


Subject(s)
Embryonic Stem Cells/physiology , Induced Pluripotent Stem Cells/physiology , Muscle, Skeletal/physiopathology , Muscular Dystrophy, Duchenne/therapy , Myoblasts, Skeletal/transplantation , Animals , Cell Differentiation , Cell Fusion , Cell Shape , Cells, Cultured , Culture Media , Dystrophin/metabolism , Embryonic Stem Cells/transplantation , Humans , Induced Pluripotent Stem Cells/transplantation , Lamin Type A/metabolism , Mice , Mice, Inbred mdx , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Dystrophy, Duchenne/pathology , Muscular Dystrophy, Duchenne/physiopathology , MyoD Protein/genetics , MyoD Protein/metabolism , Myoblasts, Skeletal/metabolism , Myoblasts, Skeletal/pathology , Regeneration , Spectrin/metabolism , Transfection
17.
Hum Gene Ther ; 23(8): 883-90, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22587705

ABSTRACT

Genes encoding transcription activator-like effector (TALE) proteins may be engineered to target specific DNA sequences. TALEs fused with a transcription activator can be used to specifically induce the expression of a gene. This could lead to completely new therapies for several diseases. We have applied this potential therapeutic approach to Friedreich ataxia (FRDA), as an example. FRDA is due to reduced expression of frataxin because of elongation of a trinucleotide (GAA) repeat in intron 1. Our aim was to develop a potential treatment for FRDA by increasing the expression of the frataxin gene. We engineered 12 TALE genes (TALE(Frat)) encoding TALE(Frat) proteins, each specifically targeting different 14-bp DNA sequences within the proximal region of the human frataxin promoter. When the genes encoding these TALE(Frat) proteins were fused with a transcription activator, that is, four VP16 peptides (i.e., VP64), the resulting TALE(Frat)-VP64 proteins induced the expression of an mCherry reporter gene fused to a mini-cytomegalovirus promoter able to be activated by the insertion of the frataxin proximal promoter upstream to the minipromoter. These TALE(Frat)-VP64 proteins also increased, by 2- to 3-fold, frataxin gene expression (detected by qRT-PCR) in the cells. We conclude that TALE(Frat) proteins targeting the frataxin promoter may be used to increase the expression of frataxin mRNA and potentially could alleviate the symptoms of Friedreich ataxia. TALE methodology opens a new field of research, which could be used to develop TALE proteins to treat other diseases by inducing the expression of specific genes.


Subject(s)
Iron-Binding Proteins/metabolism , Transcription Factors/genetics , Base Sequence , Cell Line , Friedreich Ataxia/genetics , Friedreich Ataxia/therapy , Gene Expression , Genes, Reporter , Herpes Simplex Virus Protein Vmw65/genetics , Humans , Introns , Iron-Binding Proteins/genetics , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Molecular Sequence Data , Plasmids , Promoter Regions, Genetic , RNA, Messenger/metabolism , Transcription Factors/metabolism , Trinucleotide Repeat Expansion , Frataxin , Red Fluorescent Protein
18.
J Gene Med ; 13(10): 522-37, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21954090

ABSTRACT

BACKGROUND: Various endonucleases can be engineered to induce double-strand breaks (DSBs) in chosen DNA sequences. These DSBs are spontaneously repaired by nonhomologous-end-joining, resulting in micro-insertions or micro-deletions (INDELs). We detected, characterized and quantified the frequency of INDELs produced by one meganuclease (MGN) targeting the RAG1 gene, six MGNs targeting three introns of the human dystrophin gene and one pair of zinc finger nucleases (ZFNs) targeting exon 50 of the human dystrophin gene. The experiments were performed in human cells (i.e. 293 T cells, myoblasts and myotubes). METHODS: To analyse the INDELs produced by the endonucleases the targeted region was polymerase chain reaction amplified and the amplicons were digested with the Surveyor enzyme, cloned in bacteria or deep sequenced. RESULTS: Endonucleases targeting the dystrophin gene produced INDELs of different sizes but there were clear peaks in the size distributions. The positions of these peaks were similar for MGNs but not for ZFNs in 293 T cells and in myoblasts. The size of the INDELs produced by these endonucleases in the dystrophin gene would have permitted a change in the reading frame. In a subsequent experiment, we observed that the frequency of INDELs was increased by re-exposition of the cells to the same endonuclease. CONCLUSIONS: Endonucleases are able to: (i) restore the normal reading of a gene with a frame shift mutation; (ii) delete a nonsense codon; and (iii) knockout a gene. Endonucleases could thus be used to treat Duchenne muscular dystrophy and other hereditary diseases that are the result of a nonsense codon or a frame shift mutation.


Subject(s)
Dystrophin/genetics , Endonucleases/metabolism , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/therapy , Cell Line , Codon, Nonsense , Endonucleases/genetics , Exons , Frameshift Mutation , Genes, RAG-1 , Humans , INDEL Mutation , Lentivirus/genetics , Lentivirus/metabolism , Myoblasts/physiology , Reading Frames , Zinc Fingers/genetics
19.
Mol Ther ; 18(12): 2155-63, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20683444

ABSTRACT

Duchenne muscular dystrophy (DMD) still needs effective treatments, and myoblast transplantation (MT) is considered as an approach to repair damaged skeletal muscles. DMD is due to the complete loss of dystrophin from muscles. The lack of link between the contracting apparatus and the extracellular matrix leads to frequent damage to the sarcolemma triggering muscle fiber necrosis. Laminins are major proteins in the extracellular matrix. Laminin-111 is normally present in skeletal and cardiac muscles in mice and humans but only during embryonic development. In this study, we showed that intramuscular injection of laminin-111 increased muscle strength and resistance in mdx mice. We also used laminin-111 as a coadjuvant in MT, and we showed this protein decreased considerably the repetitive cycles of degeneration, inflammatory reaction, and regeneration. Moreover, MT is significantly improved. To explain the improvement, we confirmed with the same myoblast cell batch that laminin-111 improves proliferation and drastically increases migration in vitro. These results are extremely important because DMD could be treated only by the injection of a recombinant protein, a simple and safe therapy to prevent loss of muscle function. Moreover, the improvement in MT would be significant to treat the muscles of DMD patients who are already weak.


Subject(s)
Genetic Therapy , Laminin/therapeutic use , Muscular Dystrophy, Duchenne/therapy , Animals , Cell Proliferation , Fluorescent Antibody Technique , Humans , Laminin/genetics , Laminin/pharmacology , Mice , Mice, Inbred mdx , Muscle, Skeletal/drug effects , Muscle, Skeletal/pathology , Myoblasts/cytology
20.
Cell Transplant ; 19(5): 589-96, 2010.
Article in English | MEDLINE | ID: mdl-20650035

ABSTRACT

Duchenne muscular dystrophy (DMD) is the most frequent muscular dystrophy. Currently, there is no cure for the disease. The transplantation of muscle precursor cells (MPCs) is one of the possible treatments, because it can restore the expression of dystrophin in DMD muscles. In this study, we investigated the effects of myoblasts injected with cardiotoxin on the contractile properties and resistance to eccentric contractions of transplanted and nontransplanted muscles. We used the extensor digitorum longus (EDL) as a model for our study. We conclude that the sole presence of dystrophin in a high percentage of muscle fibers is not sufficient by itself to increase the absolute or the specific force in the EDL of transplanted mdx muscle. This lack of strength increase may be due to the extensive damage that was produced by the cardiotoxin, which was coinjected with the myoblasts. However, the dystrophin presence is sufficient to protect muscle from eccentric damage as indicated by the force drop results.


Subject(s)
Dystrophin/biosynthesis , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/cytology , Muscle Cells/transplantation , Muscle, Skeletal/injuries , Muscular Dystrophy, Animal/metabolism , Muscular Dystrophy, Animal/therapy , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/therapy , Animals , Dystrophin/metabolism , Female , Fluorescent Antibody Technique , Gene Expression , Humans , Mice , Mice, Inbred C57BL , Muscle Cells/cytology , Muscle Contraction/physiology , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiopathology , Muscular Dystrophy, Duchenne/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...