Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Microbiol ; 80(8): 261, 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37368149

ABSTRACT

A bacterial strain, designated TRPH29T, was isolated from saline-alkaline soil, collected from the southern edge of the Gurbantunggut desert, Xinjiang, People's Republic of China. The isolate was Gram-staining positive, facultatively anaerobic, straight rods. Growth occurred at 15-40 °C (optimum, 28 °C), pH 8.0-13.0 (optimum, 10.0), and in the presence of 0-15% (w/v) NaCl (optimum, 2%). Phylogenetic analysis using 16S rRNA gene sequence indicated that strain TRPH29T showed the highest sequence similarities to Alkalihalobacillus krulwichiae (98.31%), Alkalihalobacillus wakoensis (98.04%), and Alkalihalobacillus akibai (97.69%). Average nucleotide identity (ANI) and digital DNA-DNA hybridization values between strain TRPH29T and Alkalihalobacillus krulwichiae, Alkalihalobacillus wakoensis, Alkalihalobacillus akibai were in the range of 73.62-75.52% and 15.0-21.20%, respectively. Results of genome analyses indicated that the genome size of strain TRPH29T was 5.05 Mb, with a genomic DNA G + C content of 37.30%. Analysis of the cellular component of strain TRPH29T revealed that the primary fatty acids were anteiso-C15:0 and iso-C15:0, and the polar lipids included diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, an unidentified glycolipid, and an unidentified phospholipid. The predominant respiratory quinone was MK-7. Based on the genomic, phylogenetic, phenotypic and chemotaxonomic analyses, strain TRPH29T represents a novel species of the genus Alkalihalobacillus, for which the name Alkalihalobacillus deserti sp. nov. is proposed. The type strain is TRPH29T (= CGMCC 1.19067T = NBRC 115475T).


Subject(s)
Bacillaceae , Phospholipids , Humans , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , DNA, Bacterial/genetics , Phospholipids/chemistry , Fatty Acids/chemistry , Bacterial Typing Techniques , Soil Microbiology
2.
Article in English | MEDLINE | ID: mdl-35532967

ABSTRACT

A bacterial strain, designated YZJH907-2T, was isolated from the stem of Suaeda aralocaspica, collected from the southern edge of the Gurbantunggut desert, Xinjiang, PR China. Cells of strain YZJH907-2T were Gram-stain-positive, aerobic and rod-shaped. They formed white or colourless circular colonies with smooth convex surfaces. Strain YZJH907-2T grew at 4-50 °C (optimum, 28-30 °C), pH 7.0-10.0 (optimum, pH 8.0-9.0) and with 0-10 % (w/v) NaCl (optimum, 3-7 %). The genomic DNA G+C content of strain YZJH907-2T was 38.1 mol%. Phylogenetic analysis based on 16S rRNA gene sequence similarity showed that the strain was most closely related to Bacillus alcalophilus DSM 485T (97.37 %), Bacillus kiskunsagensis B16-24T (96.87 %) and Bacillus bogoriensis LBB3T (96.71 %). Average nucleotide identity values between YZJH907-2T and B. alcalophilus DSM 485Tand B. bogoriensis LBB3T were 69.2 and 69.0 %, respectively. Digital DNA-DNA hybridization values of YZJH907-2T with B. alcalophilus DSM 485T and B. bogoriensis LBB3T were 19.6 and 20.4 %, respectively. The cell wall of strain YZJH907-2T contained meso-diaminopimelic acid, and the major and secondary isoprenoid quinones were MK-7 and MK-5, respectively. Results of fatty acids showed that anteiso-C15 : 0, iso-C15 : 0 and C16 : 0 were the predominant cellular fatty acids. Two-dimensional thin-layer chromatography analysis indicated that the polar lipids included diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, three unidentified phospholipids and two unidentified glycolipids. Based on the genomic, phylogenetic and phenotypic analyses, strain YZJH907-2T represented a novel species of the genus Bacillus, and thus the name Bacillus suaedae sp. nov. is proposed. The type strain is YZJH907-2T (=CGMCC 1.18763T=KCTC 43335T).


Subject(s)
Bacillus , Chenopodiaceae , Bacterial Typing Techniques , Base Composition , Chenopodiaceae/microbiology , China , DNA, Bacterial/genetics , Fatty Acids/chemistry , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
3.
Article in English | MEDLINE | ID: mdl-35076364

ABSTRACT

A novel bacterium, designated TRT317T, was isolated from saline-alkaline soil collected from the Pamir plateau in northwest China. Cells of this strain were Gram-stain-negative, aerobic rods and red-pink-coloured. Phylogenetic analysis using 16S rRNA gene sequences indicated that strain TRT317T showed the highest sequence similarity to the type strains of Pontibacter diazotrophicus (96.3 %) and Pontibacter yuliensis (96.2 %). Growth was observed at 4-40 °C, pH 6.0-10.0 and in the presence of up to 7 % (w/v) NaCl. The major fatty acids were iso-C15 : 0 and summed feature 4 (iso-C17 : 1 I/anteiso-C17 : 1 B). The polar lipids included phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, one unidentified phospholipid, four unidentified glycolipids and five unidentified lipids. The whole-cell sugars of strain TRT317T were mannose, rhamnose, glucose, galactose, xylose, arabinose and four unidentified sugars. The sole respiratory quinone was MK-7. The genomic DNA G+C content of strain TRT317T was 47.7 mol%. The average nucleotide identity (ANI) value of strain TRT317T with P. diazotrophicus was 88.3 %, which is below the standard ANI threshold for species identification (95-96 %). Combined results of physiological, genotypic, phylogenetic and chemotaxonomic analyses demonstrated that strain TRT317T represents a novel species within the genus Pontibacter, for which the name Pontibacter pamirensis sp. nov. is proposed. The type strain is TRT317T (=CGMCC1.18690T=KCTC 82818T).


Subject(s)
Bacteroidetes/classification , Phylogeny , Soil Microbiology , Alkalies , Bacterial Typing Techniques , Bacteroidetes/isolation & purification , Base Composition , China , DNA, Bacterial/genetics , Fatty Acids/chemistry , RNA, Ribosomal, 16S/genetics , Salinity , Sequence Analysis, DNA , Vitamin K 2/chemistry
4.
Int J Syst Evol Microbiol ; 71(11)2021 Nov.
Article in English | MEDLINE | ID: mdl-34797757

ABSTRACT

A bacterial strain, designated YZGR15T, was isolated from the root of an annual halophyte Suaeda aralocaspica, collected from the southern edge of the Gurbantunggut desert, north-west PR China. Cells of the isolate were Gram-stain-positive, facultatively anaerobic, irregular rods. Growth occurred at 4-42 °C (optimum, 30-37 °C), at pH 6.0-9.0 (optimum, pH 7.0-7.5) and in the presence of 0-9 % (w/v) NaCl (optimum, 2-5 %). Phylogenetic analysis using 16S rRNA gene sequences indicated that strain YZGR15T showed the highest sequence similarity to Sanguibacter keddieii (98.27 %), Sanguibacter antarcticus (98.20 %) and Sanguibacter inulinus (98.06 %). Results of genome analyses of strain YZGR15T indicated that the genome size was 3.16 Mb, with a genomic DNA G+C content of 71.9 mol%. Average nucleotide identity and digital DNA-DNA hybridization values between strain YZGR15Tand three type strains were in the range of 76.5-77.8 % and 20.0-22.2 %, respectively. Analysis of the cellular component of strain YZGR15T revealed that the primary fatty acids were anteiso-C15 : 0, C16 : 0, C14 : 0 and iso-C16 : 0 and the polar lipids included diphosphatidylglycerol, phosphatidylglycerol, three unidentified phospholipids and two unidentified glycolipids. The cell-wall characteristic amino acids were glutamic acid, alanine and an unknown amino acid. The whole-cell sugars for the strain were mannose, ribose, rhamnose, glucose and an unidentified sugar. The predominant respiratory quinone was MK-9(H4). Based on the results of genomic, phylogenetic, phenotypic and chemotaxonomic analyses, strain YZGR15T represents a novel species of the genus Sanguibacter, for which the name Sanguibacter suaedae sp. nov. is proposed. The type strain is YZGR15T (=CGMCC 1.18691T=KCTC 49659T).


Subject(s)
Actinobacteria/classification , Chenopodiaceae , Desert Climate , Phylogeny , Actinobacteria/isolation & purification , Bacterial Typing Techniques , Base Composition , Chenopodiaceae/microbiology , China , DNA, Bacterial/genetics , Fatty Acids/chemistry , Glycolipids/chemistry , Nucleic Acid Hybridization , Phospholipids/chemistry , Plant Roots/microbiology , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Vitamin K 2/analogs & derivatives , Vitamin K 2/chemistry
5.
Arch Microbiol ; 202(10): 2771-2778, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32737542

ABSTRACT

A bacterial strain designated NYYP31T was isolated from the leaves of an annual halophytes, Suaeda corniculata Bunge, collected from the southern edge of the Gurbantunggut desert, north-west China. Strain NYYP31T was Gram-staining negative, strictly aerobic, rod-shaped, non-motile, and non-spore-forming. Growth was observed at 4-42 °C, at pH 5.0-10.0, in the presence of up to 8% (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences and coding sequences of 92 protein clusters showed that strain NYYP31T should be assigned to the genus Sphingobacterium. 16S rRNA gene sequence similarity analysis showed that strain NYYP31T was most closely related to the type strain of Sphingobacterium daejeonense (97.9%) and Sphingobacterium lactis (97.7%). The predominant isoprenoid quinone was MK-7. The major fatty acids were identified as iso-C15:0, iso-C17:0 3-OH and summed feature 3 (C16:1 ω7c and/or C16:1 ω6c). The polar lipids were phosphatidylethanolamine, two unidentified phospholipids, three unidentified lipids, three unidentified amino phospholipids, and two unidentified glycolipids. The genomic DNA G + C content was 36.4 mol%. The average nucleotide identity (ANI) values for strain NYYP31T to the type strains of S. daejeonense and S. lactis were 77.9 and 74.1%, respectively, which were below the cut-off level (95-96%) for species delineation. Based on the above results, strain NYYP31T represents a novel species of the genus Sphingobacterium, for which the name Sphingobacterium endophyticum sp. nov. is proposed. The type strain is NYYP31T (= CGMCC 1.16979T = NBRC 114258T).


Subject(s)
Chenopodiaceae/microbiology , Salt-Tolerant Plants/microbiology , Sphingobacterium/classification , Sphingobacterium/isolation & purification , Bacterial Typing Techniques , Base Composition/genetics , China , DNA, Bacterial/genetics , Endophytes/classification , Endophytes/genetics , Endophytes/isolation & purification , Nucleic Acid Hybridization , Phospholipids/chemistry , Phylogeny , Plant Leaves/microbiology , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Soil Microbiology , Sphingobacterium/genetics , Vitamin K 2/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...