Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Plant Physiol ; 216: 174-180, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28704702

ABSTRACT

A screening strategy using micropropagation glass tubes with a gradient of distances between germinating seeds and a metal-contaminated medium was used for studying alterations in root architecture and morphology of Arabidopsis thaliana treated with cadmium (Cd) and zinc (Zn) at the concentration of 10-20µM and 100-200µM, respectively. Metal concentrations in plant shoots and roots were measured by quadrupole inductively coupled plasma mass spectrometry. After 21days from germination, all plants in the tubes were scanned at high resolution and the root systems analyzed. The localization of indole-3-acetic acid (IAA) in the primary root and lateral root apices was monitored using DR5:GUS, LAX3:GUS and AUX1:GUS Arabidopsis transgenic lines. Total phenol content in leaves was measured spectrophotometrically. Shoot and root dry weight and leaf area did not change in Zn-exposed plants and significantly decreased in Cd-exposed plants, compared to control plants. Cadmium induced a reduction of root length, of mean number of roots and of total root surface. Both Cd- and Zn-exposed plants showed a reduced specific root length. This morphological behavior, together with an observed increase in root diameter in metal-exposed plants could be interpreted as compensatory growth, and the observed thicker roots could act as a barrier to protect root from the metals. In comparison with the apical localization of the IAA signal in the control plants, Zn generally reinforced the intensity of IAA signal, without affecting its localization. In Cd-exposed plants, IAA localization remained apical but weaker compared to control plants. Total phenols decreased in plants exposed to Zn and Cd. Therefore, we propose that the remodelling of the root architecture and the production of some secondary metabolites, such as IAA and phenols could be two responses of plants subjected to metal stress. This knowledge can open the way to future phytoremediation strategies of contaminated sites.


Subject(s)
Arabidopsis/anatomy & histology , Arabidopsis/growth & development , Cadmium/toxicity , Homeostasis , Indoleacetic Acids/metabolism , Phenol/metabolism , Zinc/toxicity , Arabidopsis/drug effects , Arabidopsis/metabolism , Biological Transport/drug effects , Biomass , Glucuronidase/metabolism , Plant Roots/drug effects , Plant Roots/metabolism , Plant Shoots/drug effects , Plant Shoots/metabolism
2.
Plant Signal Behav ; 11(5): e1176660, 2016 05 03.
Article in English | MEDLINE | ID: mdl-27089118

ABSTRACT

Adventitious rooting is essential for the survival of numerous species from vascular cryptogams to monocots, and is required for successful micropropagation. The tissues involved in AR initiation may differ in planta and in in vitro systems. For example, in Arabidopsis thaliana, ARs originate from the hypocotyl pericycle in planta and the stem endodermis in in vitro cultured thin cell layers. The formation of adventitious roots (ARs) depends on numerous factors, among which the hormones, auxin, in particular. In both primary and lateral roots, growth depends on a functional stem cell niche in the apex, maintained by an active quiescent center (QC), and involving the expression of genes controlled by auxin and cytokinin. This review summarizes current knowledge about auxin and cytokinin control on genes involved in the definition and maintenance of QC, and stem cell niche, in the apex of Arabidopsis ARs in planta and in longitudinal thin cell layers.


Subject(s)
Arabidopsis/cytology , Plant Roots/cytology , Stem Cell Niche , Meristem/cytology , Models, Biological , Stem Cells/cytology
3.
Plant Physiol ; 152(3): 1320-34, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20032077

ABSTRACT

Bromodomain and Extra Terminal domain (BET) proteins are characterized by the presence of two types of domains, the bromodomain and the extra terminal domain. They bind to acetylated lysines present on histone tails and control gene transcription. They are also well known to play an important role in cell cycle regulation. In Arabidopsis (Arabidopsis thaliana), there are 12 BET genes; however, only two of them, IMBIBITION INDUCIBLE1 and GENERAL TRANSCRIPTION FACTOR GROUP E6 (GTE6), were functionally analyzed. We characterized GTE4 and show that gte4 mutant plants have some characteristic features of cell cycle mutants. Their size is reduced, and they have jagged leaves and a reduced number of cells in most organs. Moreover, cell size is considerably increased in the root, and, interestingly, the root quiescent center identity seems to be partially lost. Cell cycle analyses revealed that there is a delay in activation of the cell cycle during germination and a premature arrest of cell proliferation, with a switch from mitosis to endocycling, leading to a statistically significant increase in ploidy levels in the differentiated organs of gte4 plants. Our results point to a role of GTE4 in cell cycle regulation and specifically in the maintenance of the mitotic cell cycle.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/growth & development , Mitosis , Transcription Factors/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Cell Proliferation , Cell Size , DNA, Bacterial/genetics , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Genetic Complementation Test , Germination , Mutagenesis, Insertional , Mutation , Phylogeny , Plant Roots/cytology , RNA, Plant/genetics , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...