Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters











Publication year range
1.
Polymers (Basel) ; 15(3)2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36772070

ABSTRACT

During Carbon Fibre Reinforced Polymers (CFRPs) manufacturing, large quantities of scrap are being produced and usually disposed to landfill or incinerated, resulting in a high environmental impact. Furthermore, CFRP parts that have been damaged or reached their end-of-life, follow the same disposal route and because of this, not only the environment is affected, but also high added-value materials, such as carbon fibres (CFs) are lost without further valorisation. Several recycling technologies have been suggested, such as pyrolysis, to retrieve the CF reinforcement from the CFRPs. However, pyrolysis produces CFs that have residual resin and pyrolytic carbon at their surface. In order to retrieve clean long fibres, oxidation treatment in high temperatures is required. The oxidation treatment, however, has a high impact on the mechanical properties of the reclaimed CFs; therefore, an optimised pyrolysis procedure of CFRPs and post-pyrolysis treatment of reclaimed fibres (rCFs) is required. In this study, CFRPs have been subjected to pyrolysis to investigate the reclamation of CF fabrics in their primal form. The temperature of 550 °C was selected as the optimum processing temperature for the investigated composites. A parametric study on the post-pyrolysis treatment was performed in order to remove the residues from the fabrics and at the same time to investigate the CFs reusability, in terms of their mechanical and surface properties.

2.
Micromachines (Basel) ; 13(1)2022 Jan 13.
Article in English | MEDLINE | ID: mdl-35056291

ABSTRACT

The development of responsive composite materials is among the most interesting challenges in contemporary material science and technology. Nevertheless, the use of highly expensive nanostructured fillers has slowed down the spread of these smart materials in several key productive sectors. Here, we propose a new piezoresistive PVA composite containing a cheap, conductive, waste-derived, cotton biochar. We evaluated the electromagnetic properties of the composites under both AC and DC regimes and as a function of applied pressure, showing promisingly high conductivity values by using over 20 wt.% filler loading. We also measured the conductivity of the waste cotton biochar from 20 K up to 350 K observing, for the first time, hopping charge transport in biochar materials.

3.
Nanomaterials (Basel) ; 11(9)2021 Sep 13.
Article in English | MEDLINE | ID: mdl-34578699

ABSTRACT

We report on the microwave shielding efficiency of non-structural composites, where inclusions of biochar-a cost effective and eco-friendly material-are dispersed in matrices of interest for building construction. We directly measured the complex permittivity of raw materials and composites, in the frequency range 100 MHz-8 GHz. A proper permittivity mixing formula allows obtaining other combinations, to enlarge the case studies. From complex permittivity, finally, we calculated the shielding efficiency, showing that tailoring the content of biochar allows obtaining a desired value of electromagnetic shielding, potentially useful for different applications. This approach represents a quick preliminary evaluation tool to design composites with desired shielding properties starting from physical parameters.

4.
Toxics ; 9(7)2021 Jul 02.
Article in English | MEDLINE | ID: mdl-34357901

ABSTRACT

In this work, we report solid-state synthetized defective Bi2O3 containing Bi(V) sites as effective and recyclable arsenic adsorbent materials. Bi2O3 was extensively characterized, and structure-related adsorption processes are reported. Both As(V) and As(III) species-adsorption processes were investigated in a wide range of concentrations, pH values, and times. The effect of several competing ions was also tested together with the adsorbent recyclability.

5.
Nanomaterials (Basel) ; 10(9)2020 Sep 03.
Article in English | MEDLINE | ID: mdl-32899319

ABSTRACT

In this research, an innovative procedure is proposed to elaborate Raman spectra obtained from nanostructured and disordered solids. As a challenging case study, biochar, a bio-derived carbon based material, was selected. The complex structure of biochar (i.e., channeled surface, inorganic content) represents a serious challenge for Raman characterization. As widely reported, the Raman spectra are closely linked to thermal treatments of carbon material. The individual contributions to the Raman spectra are difficult to identify due to the numerous peaks that contribute to the spectra. To tackle this problem, we propose a brand new approach based on the introduction, on sound theoretical grounds, of a mixed Gaussian--Lorentzian lineshape. As per the experimental part, biochar samples were carbonized in an inert atmosphere at various temperatures and their respective spectra were successfully decomposed using the new lineshape. The evolution of the structure with carbonization temperature was investigated by Raman and XRD analysis. The results of the two techniques fairly well agree. Compared to other approaches commonly reported in the literature this method (i) gives a sounder basis to the lineshape used in disordered materials, and (ii) appears to reduce the number of components, leading to an easier understanding of their origin.

6.
Materials (Basel) ; 13(2)2020 Jan 07.
Article in English | MEDLINE | ID: mdl-31936099

ABSTRACT

Biochar is the solid residue that is recovered after the thermal cracking of biomasses in an oxygen-free atmosphere. Biochar has been used for many years as a soil amendment and in general soil applications. Nonetheless, biochar is far more than a mere soil amendment. In this review, we report all the non-soil applications of biochar including environmental remediation, energy storage, composites, and catalyst production. We provide a general overview of the recent uses of biochar in material science, thus presenting this cheap and waste-derived material as a high value-added and carbonaceous source.

7.
Materials (Basel) ; 12(21)2019 Nov 05.
Article in English | MEDLINE | ID: mdl-31694202

ABSTRACT

Large-area graphitic films, produced by an advantageous technique based on spraying a graphite lacquer on glass and low-density polyethylene (LDPE) substrates were studied for their thermoresistive applications. The spray technique uniformly covered the surface of the substrate by graphite platelet (GP) unities, which have a tendency to align parallel to the interfacial plane. Transmission electron microscopy analysis showed that the deposited films were composed of overlapped graphite platelets of different thickness, ranging from a few tens to hundreds of graphene layers, and Raman measurements provided evidence for a good graphitic quality of the material. The GP films deposited on glass and LDPE substrates exhibited different thermoresistive properties during cooling-heating cycles in the -40 to +40 °C range. Indeed, negative values of the temperature coefficient of resistance, ranging from -4 × 10-4 to -7 × 10-4 °C-1 have been observed on glass substrates, while positive values varying between 4 × 10-3 and 8 × 10-3 °C-1 were measured when the films were supported by LDPE. These behaviors were attributed to the different thermal expansion coefficients of the substrates. The appreciable thermoresistive properties of the graphite platelet films on LDPE could be useful for plastic electronic applications.

8.
Sci Rep ; 9(1): 5514, 2019 04 02.
Article in English | MEDLINE | ID: mdl-30940871

ABSTRACT

Negative emissions technologies offer an important tool to limit the global warming to <2 °C. Biochar is one of only a few such technologies, and the one at highest technology readiness level. Here we show that potassium as a low-concentration additive in biochar production can increase biochar's carbon sequestration potential; by up to 45% in this study. This translates to an increase in the estimated global biochar carbon sequestration potential to over 2.6 Gt CO2-C(eq) yr-1, thus boosting the efficiency of utilisation of limited biomass and land resources, and considerably improving the economics of biochar production and atmospheric carbon sequestration. In addition, potassium doping also increases plant nutrient content of resulting biochar, making it better suited for agricultural applications. Yet, more importantly, due to its much higher carbon sequestration potential, AM-enriched biochar facilitates viable biochar deployment for carbon sequestration purposes with reduced need to rely on biochar's abilities to improve soil properties and crop yields, hence opening new potential areas and scenarios for biochar applications.

9.
Sensors (Basel) ; 19(4)2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30781439

ABSTRACT

Worldwide consumption of coffee exceeds 11 billion tons/year. Used coffee grounds end up as landfill. However, the unique structural properties of its porous surface make coffee grounds popular for the adsorption of gaseous molecules. In the present work, we demonstrate the use of coffee grounds as a potential and cheap source for biochar carbon. The produced coffee ground biochar (CGB) was investigated as a sensing material for developing humidity sensors. CGB was fully characterized by using laser granulometry, X-ray diffraction (XRD), Raman spectroscopy, field emission-scanning electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA) and the Brunnauer Emmett Teller (BET) technique in order to acquire a complete understanding of its structural and surface properties and composition. Subsequently humidity sensors were screen printed using an ink-containing CGB with polyvinyl butyral (PVB) acting as a temporary binder and ethylene glycol monobutyral ether, Emflow, as an organic vehicle so that the proper rheological characteristics were achieved. Screen-printed films were the heated at 300℃ in air. Humidity tests were performed under a flow of 1.7 L/min in the relative humidity range 0⁻100% at room temperature. The initial impedance of the film was 25.2 0.15 MΩ which changes to 12.3 MΩ under 98% humidity exposure. A sensor response was observed above 20 % relative humidity (RH). Both the response and recovery times were reasonably fast (less than 2 min).

10.
Polymers (Basel) ; 9(12)2017 Nov 24.
Article in English | MEDLINE | ID: mdl-30965942

ABSTRACT

In recent years, low-cost carbons derived from recycled materials have been gaining attention for their potentials as filler in composites and in other applications. The electrical and mechanical properties of polymer composites can be tuned using different percentages and different kind of fillers: either low-cost (e.g., carbon black), ecofriendly (e.g., biochar), or sophisticated (e.g., carbon nanotubes). In this work, the mechanical and electrical behavior of composites with biochar and multiwall carbon nanotubes dispersed in epoxy resin are compared. Superior mechanical properties (ultimate tensile strength, strain at break) were noticed at low heat-treated biochar (concentrations 2⁻4 wt %). Furthermore, dielectric properties in the microwave range comparable to low carbon nanotubes loadings can be achieved by employing larger but manageable amounts of biochar (20 wt %), rending the production of composites for structural and functional application cost-effective.

11.
Anal Bioanal Chem ; 405(1): 321-9, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23052887

ABSTRACT

The vast majority of stent thrombosis occurs in the acute and sub-acute phases and is more common in patients with acute coronary syndromes, due to the thrombotic milieu where stent struts are positioned. Stent thrombosis is likely due to incomplete tissue coverage of metallic stents as the contact between metallic stents and blood elements may lead to platelet adhesion and trigger vessel thrombosis. If a stent is covered after 7 days, the risk that it will be found uncovered at later stages is very low (<1%). In this article, we demonstrate that diamond-like carbon (DLC) coatings, deposited by physical vapour deposition, promote rapid endothelisation of coronary stent devices, with very low platelets activation, reducing thrombotic clots. We relate these behaviours to the surface and bulk material properties of the DLC films, subjected to a comprehensive chemico-physical characterisation using several techniques (X-ray photoelectron spectroscopy, atomic force microscopy, field-emission scanning electron microscope, transmission electron microscopy combined with electron energy loss spectroscopy, Raman and dispersive X-ray spectroscopy). In vivo studies, conducted on 24 pigs, have shown complete endothelisation after 7 days, with no fibrin mesh and with only rare monocytes scattered on the endothelial layer while 30 and 180 days tests have shown reduced inflammatory activation and a complete stabilisation of the vessel healing, with a minimal neointimal proliferation. The integral and permanent DLC film coating improves haemo- and bio-compatibility and leads to an excellent early vessel healing of the stent whilst the extremely thin strut thickness reduces the amount of late neointima and consequently the risk of late restenosis. These data should translate into a reduced acute and sub-acute stent thrombosis.


Subject(s)
Chemistry, Physical/methods , Coated Materials, Biocompatible/chemistry , Acute Coronary Syndrome/metabolism , Adsorption , Albumins/chemistry , Animals , Biocompatible Materials/chemistry , Blood Platelets/metabolism , Carbon/chemistry , Cell Proliferation , Electrons , Endothelial Cells/metabolism , Fibrinogen/chemistry , Inflammation , Microscopy, Atomic Force/methods , Microscopy, Electron, Scanning/methods , Microscopy, Electron, Transmission/methods , Spectrum Analysis, Raman/methods , Stents , Surface Properties , Swine , Thrombosis , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL