Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
PLoS Genet ; 20(3): e1011142, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38457455

ABSTRACT

Succinate is a potent immune signalling molecule that is present in the mammalian gut and within macrophages. Both of these infection niches are colonised by the pathogenic bacterium Salmonella enterica serovar Typhimurium during infection. Succinate is a C4-dicarboyxlate that can serve as a source of carbon for bacteria. When succinate is provided as the sole carbon source for in vitro cultivation, Salmonella and other enteric bacteria exhibit a slow growth rate and a long lag phase. This growth inhibition phenomenon was known to involve the sigma factor RpoS, but the genetic basis of the repression of bacterial succinate utilisation was poorly understood. Here, we use an experimental evolution approach to isolate fast-growing mutants during growth of S. Typhimurium on succinate containing minimal medium. Our approach reveals novel RpoS-independent systems that inhibit succinate utilisation. The CspC RNA binding protein restricts succinate utilisation, an inhibition that is antagonised by high levels of the small regulatory RNA (sRNA) OxyS. We discovered that the Fe-S cluster regulatory protein IscR inhibits succinate utilisation by repressing the C4-dicarboyxlate transporter DctA. Furthermore, the ribose operon repressor RbsR is required for the complete RpoS-driven repression of succinate utilisation, suggesting a novel mechanism of RpoS regulation. Our discoveries shed light on the redundant regulatory systems that tightly regulate the utilisation of succinate. We speculate that the control of central carbon metabolism by multiple regulatory systems in Salmonella governs the infection niche-specific utilisation of succinate.


Subject(s)
Bacterial Proteins , Succinic Acid , Animals , Bacterial Proteins/metabolism , Succinic Acid/metabolism , Salmonella typhimurium/genetics , Succinates/metabolism , Carbon/metabolism , Sigma Factor/genetics , Sigma Factor/metabolism , Gene Expression Regulation, Bacterial , Mammals/metabolism
2.
Genome Biol ; 22(1): 196, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34210356

ABSTRACT

In response to the ongoing SARS-CoV-2 pandemic in the UK, the COVID-19 Genomics UK (COG-UK) consortium was formed to rapidly sequence SARS-CoV-2 genomes as part of a national-scale genomic surveillance strategy. The network consists of universities, academic institutes, regional sequencing centres and the four UK Public Health Agencies. We describe the development and deployment of CLIMB-COVID, an encompassing digital infrastructure to address the challenge of collecting and integrating both genomic sequencing data and sample-associated metadata produced across the COG-UK network.


Subject(s)
Cloud Computing , Genomics/organization & administration , SARS-CoV-2/genetics , COVID-19/epidemiology , Epidemiological Monitoring , Genome, Viral , Humans , Sequence Analysis, DNA , United Kingdom , User-Computer Interface , Whole Genome Sequencing
3.
Cells ; 10(4)2021 04 19.
Article in English | MEDLINE | ID: mdl-33921732

ABSTRACT

A bioinformatic search for LexA boxes, combined with transcriptomic detection of loci responsive to DNA damage, identified 48 members of the SOS regulon in the genome of Salmonella enterica serovar Typhimurium. Single cell analysis using fluorescent fusions revealed that heterogeneous expression is a common trait of SOS response genes, with formation of SOSOFF and SOSON subpopulations. Phenotypic cell variants formed in the absence of external DNA damage show gene expression patterns that are mainly determined by the position and the heterology index of the LexA box. SOS induction upon DNA damage produces SOSOFF and SOSON subpopulations that contain live and dead cells. The nature and concentration of the DNA damaging agent and the time of exposure are major factors that influence the population structure upon SOS induction. An analogy can thus be drawn between the SOS response and other bacterial stress responses that produce phenotypic cell variants.


Subject(s)
Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial , Genome, Bacterial , SOS Response, Genetics , Salmonella typhimurium/genetics , Bacterial Proteins/metabolism , Base Sequence , Chromosomes, Bacterial/genetics , DNA Damage/genetics , Gene Expression Regulation, Bacterial/drug effects , Genetic Loci , Nalidixic Acid/pharmacology , SOS Response, Genetics/drug effects , Salmonella typhimurium/drug effects , Single-Cell Analysis
4.
Sci Rep ; 11(1): 4565, 2021 02 25.
Article in English | MEDLINE | ID: mdl-33633172

ABSTRACT

Alterations in the human microbiome have been observed in a variety of conditions such as asthma, gingivitis, dermatitis and cancer, and much remains to be learned about the links between the microbiome and human health. The fusion of artificial intelligence with rich microbiome datasets can offer an improved understanding of the microbiome's role in human health. To gain actionable insights it is essential to consider both the predictive power and the transparency of the models by providing explanations for the predictions. We combine the collection of leg skin microbiome samples from two healthy cohorts of women with the application of an explainable artificial intelligence (EAI) approach that provides accurate predictions of phenotypes with explanations. The explanations are expressed in terms of variations in the relative abundance of key microbes that drive the predictions. We predict skin hydration, subject's age, pre/post-menopausal status and smoking status from the leg skin microbiome. The changes in microbial composition linked to skin hydration can accelerate the development of personalized treatments for healthy skin, while those associated with age may offer insights into the skin aging process. The leg microbiome signatures associated with smoking and menopausal status are consistent with previous findings from oral/respiratory tract microbiomes and vaginal/gut microbiomes respectively. This suggests that easily accessible microbiome samples could be used to investigate health-related phenotypes, offering potential for non-invasive diagnosis and condition monitoring. Our EAI approach sets the stage for new work focused on understanding the complex relationships between microbial communities and phenotypes. Our approach can be applied to predict any condition from microbiome samples and has the potential to accelerate the development of microbiome-based personalized therapeutics and non-invasive diagnostics.


Subject(s)
Artificial Intelligence , Biodiversity , Microbiota , Phenotype , Skin/microbiology , Adult , Aged , Aging , Computational Biology/methods , Data Analysis , Deep Learning , Female , Humans , Male , Menopause , Metagenome , Metagenomics/methods , Middle Aged , Smokers , Young Adult
5.
Nat Microbiol ; 6(3): 327-338, 2021 03.
Article in English | MEDLINE | ID: mdl-33349664

ABSTRACT

Bloodstream infections caused by nontyphoidal Salmonella are a major public health concern in Africa, causing ~49,600 deaths every year. The most common Salmonella enterica pathovariant associated with invasive nontyphoidal Salmonella disease is Salmonella Typhimurium sequence type (ST)313. It has been proposed that antimicrobial resistance and genome degradation has contributed to the success of ST313 lineages in Africa, but the evolutionary trajectory of such changes was unclear. Here, to define the evolutionary dynamics of ST313, we sub-sampled from two comprehensive collections of Salmonella isolates from African patients with bloodstream infections, spanning 1966 to 2018. The resulting 680 genome sequences led to the discovery of a pan-susceptible ST313 lineage (ST313 L3), which emerged in Malawi in 2016 and is closely related to ST313 variants that cause gastrointestinal disease in the United Kingdom and Brazil. Genomic analysis revealed degradation events in important virulence genes in ST313 L3, which had not occurred in other ST313 lineages. Despite arising only recently in the clinic, ST313 L3 is a phylogenetic intermediate between ST313 L1 and L2, with a characteristic accessory genome. Our in-depth genotypic and phenotypic characterization identifies the crucial loss-of-function genetic events that occurred during the stepwise evolution of invasive S. Typhimurium across Africa.


Subject(s)
Evolution, Molecular , Salmonella Infections/microbiology , Salmonella typhimurium/genetics , Sepsis/microbiology , Africa/epidemiology , Drug Resistance, Bacterial , Genetic Variation , Genome, Bacterial/genetics , Genotype , Humans , Phenotype , Phylogeny , Plasmids/genetics , Pseudogenes , Salmonella Infections/epidemiology , Salmonella typhimurium/isolation & purification , Salmonella typhimurium/pathogenicity , Salmonella typhimurium/physiology , Sepsis/epidemiology , Sepsis/transmission , Virulence
6.
Genome Biol ; 20(1): 199, 2019 09 13.
Article in English | MEDLINE | ID: mdl-31519212

ABSTRACT

Considerable advances in genomics over the past decade have resulted in vast amounts of data being generated and deposited in global archives. The growth of these archives exceeds our ability to process their content, leading to significant analysis bottlenecks. Sketching algorithms produce small, approximate summaries of data and have shown great utility in tackling this flood of genomic data, while using minimal compute resources. This article reviews the current state of the field, focusing on how the algorithms work and how genomicists can utilize them effectively. References to interactive workbooks for explaining concepts and demonstrating workflows are included at https://github.com/will-rowe/genome-sketching .


Subject(s)
Algorithms , Genomics/methods , Data Compression , Software
7.
PLoS Biol ; 17(1): e3000059, 2019 01.
Article in English | MEDLINE | ID: mdl-30645593

ABSTRACT

Salmonella Typhimurium sequence type (ST) 313 causes invasive nontyphoidal Salmonella (iNTS) disease in sub-Saharan Africa, targeting susceptible HIV+, malarial, or malnourished individuals. An in-depth genomic comparison between the ST313 isolate D23580 and the well-characterized ST19 isolate 4/74 that causes gastroenteritis across the globe revealed extensive synteny. To understand how the 856 nucleotide variations generated phenotypic differences, we devised a large-scale experimental approach that involved the global gene expression analysis of strains D23580 and 4/74 grown in 16 infection-relevant growth conditions. Comparison of transcriptional patterns identified virulence and metabolic genes that were differentially expressed between D23580 versus 4/74, many of which were validated by proteomics. We also uncovered the S. Typhimurium D23580 and 4/74 genes that showed expression differences during infection of murine macrophages. Our comparative transcriptomic data are presented in a new enhanced version of the Salmonella expression compendium, SalComD23580: http://bioinf.gen.tcd.ie/cgi-bin/salcom_v2.pl. We discovered that the ablation of melibiose utilization was caused by three independent SNP mutations in D23580 that are shared across ST313 lineage 2, suggesting that the ability to catabolize this carbon source has been negatively selected during ST313 evolution. The data revealed a novel, to our knowledge, plasmid maintenance system involving a plasmid-encoded CysS cysteinyl-tRNA synthetase, highlighting the power of large-scale comparative multicondition analyses to pinpoint key phenotypic differences between bacterial pathovariants.


Subject(s)
Salmonella Infections/genetics , Salmonella typhimurium/genetics , Animals , Gastroenteritis/microbiology , Gene Expression Profiling/methods , Genetic Variation/genetics , Humans , Macrophages , Mice , Salmonella Infections/microbiology , Virulence
8.
Bioinformatics ; 34(21): 3601-3608, 2018 11 01.
Article in English | MEDLINE | ID: mdl-29762644

ABSTRACT

Motivation: Antimicrobial resistance (AMR) remains a major threat to global health. Profiling the collective AMR genes within a metagenome (the 'resistome') facilitates greater understanding of AMR gene diversity and dynamics. In turn, this can allow for gene surveillance, individualized treatment of bacterial infections and more sustainable use of antimicrobials. However, resistome profiling can be complicated by high similarity between reference genes, as well as the sheer volume of sequencing data and the complexity of analysis workflows. We have developed an efficient and accurate method for resistome profiling that addresses these complications and improves upon currently available tools. Results: Our method combines a variation graph representation of gene sets with a locality-sensitive hashing Forest indexing scheme to allow for fast classification of metagenomic sequence reads using similarity-search queries. Subsequent hierarchical local alignment of classified reads against graph traversals enables accurate reconstruction of full-length gene sequences using a scoring scheme. We provide our implementation, graphing Resistance Out Of meTagenomes (GROOT), and show it to be both faster and more accurate than a current reference-dependent tool for resistome profiling. GROOT runs on a laptop and can process a typical 2 gigabyte metagenome in 2 min using a single CPU. Our method is not restricted to resistome profiling and has the potential to improve current metagenomic workflows. Availability and implementation: GROOT is written in Go and is available at https://github.com/will-rowe/groot (MIT license). Supplementary information: Supplementary data are available at Bioinformatics online.


Subject(s)
Metagenomics , Bacterial Infections , Humans , Metagenome
9.
Genome Med ; 9(1): 92, 2017 10 31.
Article in English | MEDLINE | ID: mdl-29084588

ABSTRACT

BACKGROUND: The ST313 sequence type of Salmonella Typhimurium causes invasive non-typhoidal salmonellosis and was thought to be confined to sub-Saharan Africa. Two distinct phylogenetic lineages of African ST313 have been identified. METHODS: We analysed the whole genome sequences of S. Typhimurium isolates from UK patients that were generated following the introduction of routine whole-genome sequencing (WGS) of Salmonella enterica by Public Health England in 2014. RESULTS: We found that 2.7% (84/3147) of S. Typhimurium from patients in England and Wales were ST313 and were associated with gastrointestinal infection. Phylogenetic analysis revealed novel diversity of ST313 that distinguished UK-linked gastrointestinal isolates from African-associated extra-intestinal isolates. The majority of genome degradation of African ST313 lineage 2 was conserved in the UK-ST313, but the African lineages carried a characteristic prophage and antibiotic resistance gene repertoire. These findings suggest that a strong selection pressure exists for certain horizontally acquired genetic elements in the African setting. One UK-isolated lineage 2 strain that probably originated in Kenya carried a chromosomally located bla CTX-M-15, demonstrating the continual evolution of this sequence type in Africa in response to widespread antibiotic usage. CONCLUSIONS: The discovery of ST313 isolates responsible for gastroenteritis in the UK reveals new diversity in this important sequence type. This study highlights the power of routine WGS by public health agencies to make epidemiologically significant deductions that would be missed by conventional microbiological methods. We speculate that the niche specialisation of sub-Saharan African ST313 lineages is driven in part by the acquisition of accessory genome elements.


Subject(s)
Epidemics , Public Health Surveillance , Salmonella Infections/epidemiology , Salmonella typhimurium , Adult , Africa South of the Sahara/epidemiology , Animals , Dogs , Drug Resistance, Bacterial , Drug Resistance, Multiple , Genome, Bacterial , Humans , Male , Phylogeny , Pseudogenes , Salmonella Infections/microbiology , Salmonella typhimurium/classification , Salmonella typhimurium/genetics , Salmonella typhimurium/pathogenicity , Travel , United Kingdom/epidemiology , Whole Genome Sequencing
10.
J Antimicrob Chemother ; 72(6): 1617-1623, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28175320

ABSTRACT

Objectives: Effluents contain a diverse abundance of antibiotic resistance genes that augment the resistome of receiving aquatic environments. However, uncertainty remains regarding their temporal persistence, transcription and response to anthropogenic factors, such as antibiotic usage. We present a spatiotemporal study within a river catchment (River Cam, UK) that aims to determine the contribution of antibiotic resistance gene-containing effluents originating from sites of varying antibiotic usage to the receiving environment. Methods: Gene abundance in effluents (municipal hospital and dairy farm) was compared against background samples of the receiving aquatic environment (i.e. the catchment source) to determine the resistome contribution of effluents. We used metagenomics and metatranscriptomics to correlate DNA and RNA abundance and identified differentially regulated gene transcripts. Results: We found that mean antibiotic resistance gene and transcript abundances were correlated for both hospital ( ρ = 0.9, two-tailed P <0.0001) and farm ( ρ = 0.5, two-tailed P <0.0001) effluents and that two ß-lactam resistance genes ( bla GES and bla OXA ) were overexpressed in all hospital effluent samples. High ß-lactam resistance gene transcript abundance was related to hospital antibiotic usage over time and hospital effluents contained antibiotic residues. Conclusions: We conclude that effluents contribute high levels of antibiotic resistance genes to the aquatic environment; these genes are expressed at significant levels and are possibly related to the level of antibiotic usage at the effluent source.


Subject(s)
Drug Resistance, Microbial/genetics , Gene Expression , Hospitals , Wastewater/microbiology , Water Microbiology , Anti-Bacterial Agents/pharmacology , Bacteria/genetics , Dairying , Farms , Gene Expression Profiling , Genes, Bacterial , Humans , Metagenomics , Rivers/microbiology , Spatio-Temporal Analysis , beta-Lactam Resistance/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...