ABSTRACT
ABSTRACT The species richness and relative abundances of different aboveground plant-dwelling pest and predator species were assessed in flax (Linum usitatissimum L.) ecosystem under mid-hill conditions of eastern Himalayas. The experiment was conducted in winter seasons during 2004-2013 at the Regional Research Station (Hill Zone), Uttar Banga Krishi Viswavidyalaya, Kalimpong, West Bengal, India. Twenty five species of phytophagous arthropods under 13 families were observed belonging to 6 different orders. The gram pod borer, Helicoverpa armigera (Noctuidae: Lepidoptera), aphid, Myzus persicae (Aphididae: Hemiptera), shield bug, Plautia fimbriata (Pentatomidae: Hemiptera) and leaf webber, Nacoleia sp. (Pyralidae: Lepidoptera) were found as the most common and major insect of flax. In terms of species composition, Hemiptera and Lepidoptera occupied top position (nine species) while Coleoptera ranked second position (five species). By the size of population, aphid was found to be the most frequent species followed by shield bug and leaf webber. Although, the incidence of gram pod borer was low in the field, it was the major pest of flax in respect of bud and capsule damage. The Gini-Simpson index and Effective number of species for the pest faunal complex of flax was calculated as 0.914 and 11.628, respectively. Similarly, 16 species of predatory arthropods under nine families were observed belonging to 7 different orders. The lynx spider (17.24 %) and 7-spotted lady beetle (15.52 %) dominated the predatory community by sheer number. The Gini-Simpson index and Effective number of species for the predatory fauna was derived as 0.898 and 9.804, respectively.
ABSTRACT
Abstract Fourteen Trichoderma isolates were evaluated for their tolerance to two heavy metals, nickel and cadmium. Three isolates, MT-4, UBT-18, and IBT-I, showed high levels of nickel tolerance, whereas MT-4, UBT-18, and IBT-II showed better tolerance of cadmium than the other isolates. Under nickel stress, biomass production increased up to a Ni concentration of 60 ppm in all strains but then decreased as the concentrations of nickel were further increased. Among the nickel-tolerant isolates, UBT-18 produced significantly higher biomass upon exposure to nickel (up to 150 ppm); however, the minimum concentration of nickel required to inhibit 50% of growth (MIC50) was highest in IBT-I. Among the cadmium-tolerant isolates, IBT-II showed both maximum biomass production and a maximum MIC50 value in cadmium stress. As the biomass of the Trichoderma isolates increased, a higher percentage of nickel removal was observed up to a concentration of 40 ppm, followed by an increase in residual nickel and a decrease in biomass production at higher nickel concentrations in the medium. The increase in cadmium concentrations resulted in a decrease in biomass production and positively correlated with an increase in residual cadmium in the culture broth. Nickel and cadmium stress also influenced the sensitivity of the Trichoderma isolates to soil fungistasis. Isolates IBT-I and UBT-18 were most tolerant to fungistasis under nickel and cadmium stress, respectively.
Subject(s)
Trichoderma/metabolism , Cadmium/metabolism , Nickel/metabolism , Soil Microbiology , Trichoderma/isolation & purification , Trichoderma/classification , Trichoderma/growth & development , Biodegradation, Environmental , Cadmium/chemistry , Kinetics , Nickel/chemistryABSTRACT
Fourteen Trichoderma isolates were evaluated for their tolerance to two heavy metals, nickel and cadmium. Three isolates, MT-4, UBT-18, and IBT-I, showed high levels of nickel tolerance, whereas MT-4, UBT-18, and IBT-II showed better tolerance of cadmium than the other isolates. Under nickel stress, biomass production increased up to a Ni concentration of 60 ppm in all strains but then decreased as the concentrations of nickel were further increased. Among the nickel-tolerant isolates, UBT-18 produced significantly higher biomass upon exposure to nickel (up to 150 ppm); however, the minimum concentration of nickel required to inhibit 50% of growth (MIC50) was highest in IBT-I. Among the cadmium-tolerant isolates, IBT-II showed both maximum biomass production and a maximum MIC50 value in cadmium stress. As the biomass of the Trichoderma isolates increased, a higher percentage of nickel removal was observed up to a concentration of 40 ppm, followed by an increase in residual nickel and a decrease in biomass production at higher nickel concentrations in the medium. The increase in cadmium concentrations resulted in a decrease in biomass production and positively correlated with an increase in residual cadmium in the culture broth. Nickel and cadmium stress also influenced the sensitivity of the Trichoderma isolates to soil fungistasis. Isolates IBT-I and UBT-18 were most tolerant to fungistasis under nickel and cadmium stress, respectively.(AU)
Subject(s)
Trichoderma/chemistry , Trichoderma/isolation & purification , Nickel/chemistry , Cadmium/chemistry , Metals, HeavyABSTRACT
Fourteen Trichoderma isolates were evaluated for their tolerance to two heavy metals, nickel and cadmium. Three isolates, MT-4, UBT-18, and IBT-I, showed high levels of nickel tolerance, whereas MT-4, UBT-18, and IBT-II showed better tolerance of cadmium than the other isolates. Under nickel stress, biomass production increased up to a Ni concentration of 60ppm in all strains but then decreased as the concentrations of nickel were further increased. Among the nickel-tolerant isolates, UBT-18 produced significantly higher biomass upon exposure to nickel (up to 150ppm); however, the minimum concentration of nickel required to inhibit 50% of growth (MIC50) was highest in IBT-I. Among the cadmium-tolerant isolates, IBT-II showed both maximum biomass production and a maximum MIC50 value in cadmium stress. As the biomass of the Trichoderma isolates increased, a higher percentage of nickel removal was observed up to a concentration of 40ppm, followed by an increase in residual nickel and a decrease in biomass production at higher nickel concentrations in the medium. The increase in cadmium concentrations resulted in a decrease in biomass production and positively correlated with an increase in residual cadmium in the culture broth. Nickel and cadmium stress also influenced the sensitivity of the Trichoderma isolates to soil fungistasis. Isolates IBT-I and UBT-18 were most tolerant to fungistasis under nickel and cadmium stress, respectively.