Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 286(Pt 1): 131660, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34315078

ABSTRACT

Biochar mediated pollutant removal is gaining attention because of high efficiency of the process. However, effective recycling avenues of the pollutant-saturated biochars are scarce in the knowledge base; while such materials can be a new source of long-range contamination. Therefore, potential of vermitechnology for eco-friendly recycling of pollutant-loaded biochar was assessed by using arsenic-saturated native (NBC) and exfoliated (EBC) biochars as feedstocks for the first time. Interestingly, the bioavailable arsenic fractions (water soluble and exchangeable) considerably reduced by 22-44 % with concurrent increment (~8-15 %) of the recalcitrant (residual and organic bound) fractions in the biochar-based feedstocks. Consequently, ~2-3 folds removal of the total arsenic was achieved through vermicomposting. The earthworm population growth (2.5-3 folds) was also highly satisfactory in the biochar-based feedstocks. The results clearly imply that Eisenia fetida could compensate the arsenic-induced stress to microbial population and greatly augmented microbial biomass, respiration and enzyme activity by 3-12 folds. Moreover, biochar-induced alkalinity was significantly neutralized in the vermibeds, which remarkably balanced the TOC level and nutrient (N, P, and K) availability particularly in EBC + CD vermibeds. Overall, the nutrient recovery potential and arsenic removal efficiency of vermitechnology was clearly exhibited in NBC/EBC + CD (12.5:87.5) feedstocks. Hence, it is abundantly clear that vermitechnology can be a suitable option for eco-friendly recycling of pollutant-saturated sorbing agents, like biochars.


Subject(s)
Arsenic , Soil Pollutants , Charcoal , Nutrients , Soil , Soil Pollutants/analysis
2.
Environ Sci Pollut Res Int ; 26(7): 7272-7276, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30661167

ABSTRACT

Highly porous biochar (BC) structures have been prepared from inexpensive biomasses like rice straw, bamboo, sugarcane waste, and corn cob via a slow pyrolysis technique in nitrogenous atmosphere. A surface engineering technique has been applied to enhance the surface-to-volume ratio of each biochar sample and finally compared its characteristics through standard surface and elemental characterization techniques, viz. CHN (carbon, hydrogen, and nitrogen), FTIR (Fourier transform infrared spectroscopy), BET (Brunauer-Emmett-Teller), and SEM (scanning electron microscopy). All the biochar samples were observed to be highly carbonized and aromatized. Exfoliated structures were found to contain more elemental carbon (34.14-77.32%) than its native form (30.92-74.46%). Aromatic hydrocarbon, aromatic C=C, aromatics, aliphatic C-O, aliphatic hydrocarbon, and H-bonded OH groups were found to predominate in the surface of biochar structures independent of their precursor composition and extent of exfoliation. SEM micrographic images clearly ensured about the unoriented sheets like the morphology of different biochar samples. Although no significant structural difference was found to exist depending on their precursor compositions, quantitative enhancement of porosity was found to be observed after exfoliation. Both native (240.65 m2/g) and exfoliated (712.89 m2/g) biochars derived from sugarcane wastes were observed to have a maximum surface area in comparison to the biochars derived from rice straw (native, 22.08 m2/g; exfoliated, 29.92 m2/g), bamboo (native, 42.08 m2/g; exfoliated, 248.38 m2/g), and corn cob (native, 136.62 m2/g; exfoliated, 221.71 m2/g). Exfoliated biochars were found to be consistently more potent in comparison to its native form as per our comparative characterizations performed so far.


Subject(s)
Agriculture , Charcoal/chemistry , Crops, Agricultural/chemistry , Biomass , Carbon , Microscopy, Electron, Scanning , Nitrogen , Oryza , Saccharum , Spectroscopy, Fourier Transform Infrared
3.
J Agric Food Chem ; 62(35): 8777-85, 2014 Sep 03.
Article in English | MEDLINE | ID: mdl-25126671

ABSTRACT

Mung bean plants were grown under controlled conditions and supplemented with macro- and micronutrients. The objective of this study was to determine the response of manganese nanoparticles (MnNP) in nitrate uptake, assimilation, and metabolism compared with the commercially used manganese salt, manganese sulfate (MS). MnNP was modulated to affect the assimilatory process by enhancing the net flux of nitrogen assimilation through NR-NiR and GS-GOGAT pathways. This study was associated with toxicological investigation on in vitro and in vivo systems to promote MnNP as nanofertilizer and can be used as an alternative to MS. MnNP did not impart any toxicity to the mice brain mitochondria except in the partial inhibition of complex II-III activity in ETC. Therefore, mitochondrial dysfunction and neurotoxicity, which were noted by excess usage of elemental manganese, were prevented. This is the first attempt to highlight the nitrogen uptake, assimilation, and metabolism in a plant system using a nanoparticle to promote a biosafe nanomicronutrient-based crop management.


Subject(s)
Fabaceae/metabolism , Manganese/metabolism , Nanoparticles/toxicity , Nitrogen/metabolism , Animals , Brain/drug effects , Brain/metabolism , Fabaceae/enzymology , Female , Fertilizers/analysis , Male , Manganese/chemistry , Manganese/toxicity , Mice , Mitochondria/drug effects , Mitochondria/metabolism , Nanoparticles/chemistry , Nitrate Reductase/metabolism , Plant Proteins/metabolism
4.
J Mater Chem B ; 1(18): 2375-2382, 2013 May 14.
Article in English | MEDLINE | ID: mdl-32261072

ABSTRACT

A facile route has been developed to synthesise and isolate sulphur doped fluorescent carbon dots for the first time. Such carbogenic quantum dots exhibit a wide band gap of 4.43 eV with a high open circuit voltage (VOC) of 617 mV along with a fill factor (FF) as high as 37%, using phenyl-C60-butyric acid methyl ester (PCBM) as the electron transporting layer. Besides the wide band gap, which is useful in the fabrication of solar cells, sulphur modified carbon dots also exhibit a high fluorescence quantum yield of 11.8% without any additional surface passivation, producing a unique fluorescent probe for further applications. In addition, the particles have a strong tendency to interact with the surface of gold nanoparticles and produce a thin fluorescent layer over their surfaces. Moreover, as they are completely biocompatible in nature, the highly fluorescent S-doped carbon dots have a strong potential for use in bioimaging applications. Interestingly, owing to the presence of oxygen and sulphur functionality, the highly negatively charged particles can easily bind with positively charged DNA-PEI complexes, simply by mixing them, and after interaction with DNA, bright blue fluorescence has been observed under an excitation wavelength of 405 nm .

SELECTION OF CITATIONS
SEARCH DETAIL
...