Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Vet Med (Auckl) ; 7: 1-7, 2016.
Article in English | MEDLINE | ID: mdl-30050832

ABSTRACT

The Mexican axolotl (Ambystoma mexicanum) is a unique research model in several fields of medicine, where surgical and invasive procedures may be required. As yet, little is known about the efficacy of MS222 (tricaine methanesulfonate), which is the most commonly used anesthetic agent in amphibians. The main objectives of this study were to evaluate the anesthetic effects and physiological changes in adult axolotls following a 20-minute immersion bath, containing progressive MS222 concentrations starting at 0.1%. Depth of anesthesia and physiological changes were evaluated every 15 minutes post-MS222 exposure with the following parameters: righting behavior, withdrawal reflex, acetic acid test response, heart rate, and blood oxygen saturation, as well as cloacal and body surface temperatures. A 20-minute exposure in a 0.1% MS222 immersion bath (n=6 animals) had no anesthetic effects on adult axolotls after 20 minutes of exposure. With a 0.2% MS222 solution, all axolotls (n=9) were deeply anesthetized at 15 minutes, and 80% were still unresponsive at 30 minutes postexposure. Blood oxygen saturation and heart rate were slightly, but significantly, increased when compared with the baseline value and remained stable up to recovery. There was no significant increase in surface and cloaca temperatures, compared with baseline. With the 0.4% MS222 solution, the duration of anesthesia lasted for 90 minutes to at least 120 minutes (n=3 animals) and this concentration was deemed too high. In conclusion, a 20-minute immersion bath with 0.2% MS222 may be used for short procedures (15-30 minutes) requiring anesthesia of adult axolotls.

2.
Dev Growth Differ ; 50(4): 289-97, 2008 May.
Article in English | MEDLINE | ID: mdl-18336582

ABSTRACT

Urodele amphibians are unique adult vertebrates because they are able to regenerate body parts after amputation. Studies of urodele limb regeneration, the key model system for vertebrate regeneration, have led to an understanding of the origin of blastema cells and the importance of positional interactions between blastema cells in the control of growth and pattern formation. Progress is now being made in the identification of the signaling pathways that regulate dedifferentiation, blastema morphogenesis, growth and pattern formation. Members of the Wnt family of secreted proteins are expressed in developing and regenerating limbs, and have the potential to control growth, pattern formation and differentiation. We have studied the expression of two non-canonical Wnt genes, Wnt-5a and Wnt-5b. We report that they are expressed in equivalent patterns during limb development and limb regeneration in the axolotl (Ambystoma mexicanum), and during limb development in other tetrapods, implying conservation of function. Our analysis of the effects of ectopic Wnt-5a expression is consistent with the hypothesis that canonical Wnt signaling functions during the early stages of regeneration to control the dedifferentiation of stump cells giving rise to the regeneration-competent cells of the blastema.


Subject(s)
Ambystoma mexicanum/physiology , Extremities/physiology , Regeneration , Wnt Proteins/metabolism , Animals , Blotting, Northern , Cell Differentiation , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , In Situ Hybridization , Wnt Proteins/genetics , Wnt-5a Protein
SELECTION OF CITATIONS
SEARCH DETAIL