Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Cell Mol Life Sci ; 81(1): 21, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38196006

ABSTRACT

BCL6 translocation is one of the most common chromosomal translocations in cancer and results in its enhanced expression in germinal center B cells. It involves the fusion of BCL6 with any of its twenty-six Ig and non-Ig translocation partners associated with diffuse large B cell lymphoma (DLBCL). Despite being discovered long back, the mechanism of BCL6 fragility is largely unknown. Analysis of the translocation breakpoints in 5' UTR of BCL6 reveals the clustering of most of the breakpoints around a region termed Cluster II. In silico analysis of the breakpoint cluster sequence identified sequence motifs that could potentially fold into non-B DNA. Results revealed that the Cluster II sequence folded into overlapping hairpin structures and identified sequences that undergo base pairing at the stem region. Further, the formation of cruciform DNA blocked DNA replication. The sodium bisulfite modification assay revealed the single-strandedness of the region corresponding to hairpin DNA in both strands of the genome. Further, we report the formation of intramolecular parallel G4 and triplex DNA, at Cluster II. Taken together, our studies reveal that multiple non-canonical DNA structures exist at the BCL6 cluster II breakpoint region and contribute to the fragility leading to BCL6 translocation in DLBCL patients.


Subject(s)
Lymphoma, Large B-Cell, Diffuse , Translocation, Genetic , Humans , Translocation, Genetic/genetics , Gene Rearrangement , Lymphoma, Large B-Cell, Diffuse/genetics , B-Lymphocytes , 5' Untranslated Regions , DNA , Proto-Oncogene Proteins c-bcl-6/genetics
2.
Biochem J ; 480(24): 2061-2077, 2023 12 20.
Article in English | MEDLINE | ID: mdl-38084601

ABSTRACT

The stringent regulation of RAGs (Recombination activating genes), the site-specific endonuclease responsible for V(D)J recombination, is important to prevent genomic rearrangements and chromosomal translocations in lymphoid cells. In the present study, we identify a microRNA, miR-501, which can regulate the expression of RAG1 in lymphoid cells. Overexpression of the pre-miRNA construct led to the generation of mature miRNAs and a concomitant reduction in RAG1 expression, whereas inhibition using anti-miRs resulted in its enhanced expression. The direct interaction of the 3'UTR of miR-501 with RAG1 was confirmed by the reporter assay. Importantly, overexpression of miRNAs led to inhibition of V(D)J recombination in B cells, revealing their impact on the physiological function of RAGs. Of interest is the inverse correlation observed for miR-501 with RAG1 in various leukemia patients and lymphoid cell lines, suggesting its possible use in cancer therapy. Thus, our results reveal the regulation of RAG1 by miR-501-3p in B cells and thus V(D)J recombination and its possible implications on immunoglobulin leukemogenesis.


Subject(s)
MicroRNAs , V(D)J Recombination , Humans , V(D)J Recombination/genetics , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , MicroRNAs/genetics , B-Lymphocytes
3.
J Biol Chem ; 299(12): 105431, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37926284

ABSTRACT

t(8;14) translocation is the hallmark of Burkitt's lymphoma and results in c-MYC deregulation. During the translocation, c-MYC gene on chromosome 8 gets juxtaposed to the Ig switch regions on chromosome 14. Although the promoter of c-MYC has been investigated for its mechanism of fragility, little is known about other c-MYC breakpoint regions. We have analyzed the translocation break points at the exon 1/intron 1 of c-MYC locus from patients with Burkitt's lymphoma. Results showed that the breakpoint region, when present on a plasmid, could fold into an R-loop confirmation in a transcription-dependent manner. Sodium bisulfite modification assay revealed significant single-strandedness on chromosomal DNA of Burkitt's lymphoma cell line, Raji, and normal lymphocytes, revealing distinct R-loops covering up to 100 bp region. Besides, ChIP-DRIP analysis reveals that the R-loop antibody can bind to the breakpoint region. Further, we show the formation of stable parallel intramolecular G-quadruplex on non-template strand of the genome. Finally, incubation of purified AID in vitro or overexpression of AID within the cells led to enhanced mutation frequency at the c-MYC breakpoint region. Interestingly, anti-γH2AX can bind to DSBs generated at the c-MYC breakpoint region within the cells. The formation of R-loop and G-quadruplex was found to be mutually exclusive. Therefore, our results suggest that AID can bind to the single-stranded region of the R-loop and G4 DNA, leading to the deamination of cytosines to uracil and induction of DNA breaks in one of the DNA strands, leading to double-strand break, which could culminate in t(8;14) chromosomal translocation.


Subject(s)
Burkitt Lymphoma , G-Quadruplexes , Humans , Burkitt Lymphoma/genetics , Burkitt Lymphoma/pathology , DNA , Genes, myc , R-Loop Structures , Translocation, Genetic
4.
PLoS Genet ; 18(10): e1010421, 2022 10.
Article in English | MEDLINE | ID: mdl-36228010

ABSTRACT

Chromosomal translocations are considered as one of the major causes of lymphoid cancers. RAG complex, which is responsible for V(D)J recombination, can also cleave non-B DNA structures and cryptic RSSs in the genome leading to chromosomal translocations. The mechanism and factors regulating the illegitimate function of RAGs resulting in oncogenesis are largely unknown. Upon in silico analysis of 3760 chromosomal translocations from lymphoid cancer patients, we find that 93% of the translocation breakpoints possess adjacent cryptic nonamers (RAG binding sequences), of which 77% had CpGs in proximity. As a proof of principle, we show that RAGs can efficiently bind to cryptic nonamers present at multiple fragile regions and cleave at adjacent mismatches generated to mimic the deamination of CpGs. ChIP studies reveal that RAGs can indeed recognize these fragile sites on a chromatin context inside the cell. Finally, we show that AID, the cytidine deaminase, plays a significant role during the generation of mismatches at CpGs and reconstitute the process of RAG-dependent generation of DNA breaks both in vitro and inside the cells. Thus, we propose a novel mechanism for generation of chromosomal translocation, where RAGs bind to the cryptic nonamer sequences and direct cleavage at adjacent mismatch generated due to deamination of meCpGs or cytosines.


Subject(s)
Neoplasms , Translocation, Genetic , Humans , Chromatin , Cytidine Deaminase/genetics , DNA/genetics , Homeodomain Proteins/metabolism , Neoplasms/genetics , Translocation, Genetic/genetics , CpG Islands
5.
Cell Rep ; 36(2): 109390, 2021 07 13.
Article in English | MEDLINE | ID: mdl-34260911

ABSTRACT

Recombination activating genes (RAGs), consisting of RAG1 and RAG2, are stringently regulated lymphoid-specific genes, which initiate V(D)J recombination in developing lymphocytes. We report the regulation of RAG1 through a microRNA (miRNA), miR-29c, in a B cell stage-specific manner in mice and humans. Various lines of experimentation, including CRISPR-Cas9 genome editing, demonstrate the target specificity and direct interaction of miR-29c to RAG1. Modulation of miR-29c levels leads to change in V(D)J recombination efficiency in pre-B cells. The miR-29c expression is inversely proportional to RAG1 in a B cell developmental stage-specific manner, and miR-29c null mice exhibit a reduction in mature B cells. A negative correlation of miR-29c and RAG1 levels is also observed in leukemia patients, suggesting the potential use of miR-29c as a biomarker and a therapeutic target. Thus, our results reveal the role of miRNA in the regulation of RAG1 and its relevance in cancer.


Subject(s)
B-Lymphocytes/metabolism , Gene Expression Regulation , Homeodomain Proteins/genetics , MicroRNAs/metabolism , V(D)J Recombination/genetics , 3' Untranslated Regions/genetics , Animals , B-Lymphocytes/cytology , Base Sequence , CRISPR-Cas Systems/genetics , Cell Line, Tumor , Homeodomain Proteins/metabolism , Humans , Luciferases/metabolism , Lymphocytes/metabolism , Mice, Inbred BALB C , Mice, Inbred C57BL , MicroRNAs/genetics , RNA Processing, Post-Transcriptional/genetics
6.
Int J Cancer ; 149(6): 1210-1220, 2021 09 15.
Article in English | MEDLINE | ID: mdl-33634864

ABSTRACT

T-cell acute lymphoblastic leukemia (T-ALL) is characterized by the leukemogenic transformation of immature T cells, which accumulate an array of genetic and epigenetic lesions, leading to a sustained proliferation of abnormal T cells. Genetic alterations in the DNA repair genes, protooncogenes, transcription factors, and epigenetic modifiers have been studied in the past decade using next-generation sequencing and high-resolution copy number arrays. While other genomic lesions like chromosomal rearrangements, inversions, insertions, and gene fusions have been well studied at functional level, the mechanism of generation of driver mutations in T-ALL is the subject of current investigation. Novel oncogenic mutations in the TP53, BRCA2, PTEN, IL7R, RAS, NOTCH1, ETV6, BCL11B, WT1, DNMT3A, PRC2, PHF6, USP7, KDM6A and an array of other genes disrupt the genetic and epigenetic homeostasis in T-ALL. In this review, we have summarized the mechanistic role of deleterious driver mutations in T-ALL initiation and progression. We speculate that the formation of non-B DNA structures could be one of the primary reasons for the occurrence of different genomic lesions seen in T-ALL, which warrants further investigation. Understanding the mechanism behind the genesis of oncogenic mutations will pave the way to develop targeted therapies that can improve the overall survival and treatment outcome.


Subject(s)
Biomarkers, Tumor/genetics , Point Mutation , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Epigenesis, Genetic , Gene Dosage , High-Throughput Nucleotide Sequencing , Humans , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...