Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 146(28): 18861-18865, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38959425

ABSTRACT

We report an electrochemical method for doping two-dimensional (2D) superatomic semiconductor Re6Se8Cl2 that significantly improves the material's electrical transport while retaining the in-plane and stacking structures. The electrochemical reduction induces the complete dissociation of chloride anions from the surface of each superatomic nanosheet. After the material is dehalogenated, we observe the electrical conductivity (σ) increases by two orders of magnitude while the 3D electron carrier density (n3D) increases by three orders of magnitude. In addition, the thermal activation energy (Ea) and electron mobility (µe) decrease. We conclude that we have achieved effective electron-doping in 2D superatomic Re6Se8Cl2, which significantly improves the electrical transport properties. Our work sets the foundation for electrochemically doping and tuning the transport properties of other 2D superatomic materials.

2.
Nat Commun ; 15(1): 6005, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39019853

ABSTRACT

Since their first observation in 2017, atomically thin van der Waals (vdW) magnets have attracted significant fundamental, and application-driven attention. However, their low ordering temperatures, Tc, sensitivity to atmospheric conditions and difficulties in preparing clean large-area samples still present major limitations to further progress, especially amongst van der Waals magnetic semiconductors. The remarkably stable, high-Tc vdW magnet CrSBr has the potential to overcome these key shortcomings, but its nanoscale properties and rich magnetic phase diagram remain poorly understood. Here we use single spin magnetometry to quantitatively characterise saturation magnetization, magnetic anisotropy constants, and magnetic phase transitions in few-layer CrSBr by direct magnetic imaging. We show pristine magnetic phases, devoid of defects on micron length-scales, and demonstrate remarkable air-stability down the monolayer limit. We furthermore address the spin-flip transition in bilayer CrSBr by imaging the phase-coexistence of regions of antiferromagnetically (AFM) ordered and fully aligned spins. Our work will enable the engineering of exotic electronic and magnetic phases in CrSBr and the realization of novel nanomagnetic devices based on this highly promising vdW magnet.

3.
Nat Commun ; 15(1): 4459, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796433

ABSTRACT

The magnetic proximity effect can induce a spin dependent exchange shift in the band structure of graphene. This produces a magnetization and a spin polarization of the electron/hole carriers in this material, paving the way for its use as an active component in spintronics devices. The electrostatic control of this spin polarization in graphene has however never been demonstrated so far. We show that interfacing graphene with the van der Waals antiferromagnet CrSBr results in an unconventional manifestation of the quantum Hall effect, which can be attributed to the presence of counterflowing spin-polarized edge channels originating from the spin-dependent exchange shift in graphene. We extract an exchange shift ranging from 27 - 32 meV, and show that it also produces an electrostatically tunable spin polarization of the electron/hole carriers in graphene ranging from - 50% to + 69% in the absence of a magnetic field. This proof of principle provides a starting point for the use of graphene as an electrostatically tunable source of spin current and could allow this system to generate a large magnetoresistance in gate tunable spin valve devices.

4.
Nano Lett ; 24(15): 4319-4329, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38567828

ABSTRACT

The discovery of magnetic order at the 2D limit has sparked new exploration of van der Waals magnets for potential use in spintronics, magnonics, and quantum information applications. However, many of these materials feature low magnetic ordering temperatures and poor air stability, limiting their fabrication into practical devices. In this Mini-Review, we present a promising material for fundamental studies and functional use: CrSBr, an air-stable, two-dimensional magnetic semiconductor. Our discussion highlights experimental research on bulk CrSBr, including quasi-1D semiconducting properties, A-type antiferromagnetic order (TN = 132 K), and strong coupling between its electronic and magnetic properties. We then discuss the behavior of monolayer and few-layer flakes and present a perspective on promising avenues for further studies on CrSBr.

5.
Nano Lett ; 24(22): 6513-6520, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38652810

ABSTRACT

Heat-to-charge conversion efficiency of thermoelectric materials is closely linked to the entropy per charge carrier. Thus, magnetic materials are promising building blocks for highly efficient energy harvesters as their carrier entropy is boosted by a spin degree of freedom. In this work, we investigate how this spin-entropy impacts heat-to-charge conversion in the A-type antiferromagnet CrSBr. We perform simultaneous measurements of electrical conductance and thermocurrent while changing magnetic order using the temperature and magnetic field as tuning parameters. We find a strong enhancement of the thermoelectric power factor at around the Néel temperature. We further reveal that the power factor at low temperatures can be increased by up to 600% upon applying a magnetic field. Our results demonstrate that the thermoelectric properties of 2D magnets can be optimized by exploiting the sizable impact of spin-entropy and confirm thermoelectric measurements as a sensitive tool to investigate subtle magnetic phase transitions in low-dimensional magnets.

7.
Nat Commun ; 15(1): 1439, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38365892

ABSTRACT

Metal-metal contacts, though not yet widely realized, may provide exciting opportunities to serve as tunable and functional interfaces in single-molecule devices. One of the simplest components which might facilitate such binding interactions is the ferrocene group. Notably, direct bonds between the ferrocene iron center and metals such as Pd or Co have been demonstrated in molecular complexes comprising coordinating ligands attached to the cyclopentadienyl rings. Here, we demonstrate that ferrocene-based single-molecule devices with Fe-Au interfacial contact geometries form at room temperature in the absence of supporting coordinating ligands. Applying a photoredox reaction, we propose that ferrocene only functions effectively as a contact group when oxidized, binding to gold through a formal Fe3+ center. This observation is further supported by a series of control measurements and density functional theory calculations. Our findings extend the scope of junction contact chemistries beyond those involving main group elements, lay the foundation for light switchable ferrocene-based single-molecule devices, and highlight new potential mechanistic function(s) of unsubstituted ferrocenium groups in synthetic processes.

8.
Nature ; 625(7995): 483-488, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38233620

ABSTRACT

Heavy-fermion metals are prototype systems for observing emergent quantum phases driven by electronic interactions1-6. A long-standing aspiration is the dimensional reduction of these materials to exert control over their quantum phases7-11, which remains a significant challenge because traditional intermetallic heavy-fermion compounds have three-dimensional atomic and electronic structures. Here we report comprehensive thermodynamic and spectroscopic evidence of an antiferromagnetically ordered heavy-fermion ground state in CeSiI, an intermetallic comprising two-dimensional (2D) metallic sheets held together by weak interlayer van der Waals (vdW) interactions. Owing to its vdW nature, CeSiI has a quasi-2D electronic structure, and we can control its physical dimension through exfoliation. The emergence of coherent hybridization of f and conduction electrons at low temperature is supported by the temperature evolution of angle-resolved photoemission and scanning tunnelling spectra near the Fermi level and by heat capacity measurements. Electrical transport measurements on few-layer flakes reveal heavy-fermion behaviour and magnetic order down to the ultra-thin regime. Our work establishes CeSiI and related materials as a unique platform for studying dimensionally confined heavy fermions in bulk crystals and employing 2D device fabrication techniques and vdW heterostructures12 to manipulate the interplay between Kondo screening, magnetic order and proximity effects.

9.
J Am Chem Soc ; 146(2): 1337-1345, 2024 01 17.
Article in English | MEDLINE | ID: mdl-38165744

ABSTRACT

State-of-the-art methods in photoproximity labeling center on the targeted generation and capture of short-lived reactive intermediates to provide a snapshot of local protein environments. Diazirines are the current gold standard for high-resolution proximity labeling, generating short-lived aryl(trifluoromethyl) carbenes. Here, we present a method to access aryl(trifluoromethyl) carbenes from a stable diazo source via tissue-penetrable, deep red to near-infrared light (600-800 nm). The operative mechanism of this activation involves Dexter energy transfer from photoexcited osmium(II) photocatalysts to the diazo, thus revealing an aryl(trifluoromethyl) carbene. The labeling preferences of the diazo probe with amino acids are studied, showing high reactivity toward heteroatom-H bonds. Upon the synthesis of a biotinylated diazo probe, labeling studies are conducted on native proteins as well as proteins conjugated to the Os photocatalyst. Finally, we demonstrate that the conjugation of a protein inhibitor to the photocatalyst also enables selective protein labeling in the presence of spectator proteins and achieves specific labeling of a membrane protein on the surface of mammalian cells via a two-antibody photocatalytic system.


Subject(s)
Proteins , Red Light , Animals , Proteins/chemistry , Methane/chemistry , Diazomethane/chemistry , Mammals
SELECTION OF CITATIONS
SEARCH DETAIL