Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Vaccine ; 39(3): 487-494, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33357957

ABSTRACT

Colonization factors or Coli surface antigens (CFs or CS) are important virulence factors of Enterotoxigenic E. coli (ETEC) that mediate intestinal colonization and accordingly are targets of vaccine development efforts. CS6 is a highly prevalent CF associated with symptomatic ETEC infection both in endemic populations and amongst travelers. In this study, we used an Aotus nancymaae non-human primate ETEC challenge model with a CS6 + ETEC strain, B7A, to test the immunogenicity and protective efficacy (PE) of a recombinant CS6-based subunit vaccine. Specifically, we determined the ability of dscCssBA, the donor strand complemented recombinant stabilized fusion of the two subunits of the CS6 fimbriae, CssA and CssB, to elicit protection against CS6 + ETEC mediated diarrhea when given intradermally (ID) with the genetically attenuated double mutant heat-labile enterotoxin LT(R192G/L211A) (dmLT). ID vaccination with dscCssBA + dmLT induced strong serum antibody responses against CS6 and LT. Importantly, vaccination with dscCssBA + dmLT resulted in no observed diarrheal disease (PE = 100%, p = 0.03) following B7A challenge as compared to PBS immunized animals, with an attack rate of 62.5%. These data demonstrate the potential role that CS6 may play in ETEC infection and that recombinant dscCssBA antigen can provide protection against challenge with the homologous CS6 + ETEC strain, B7A, in the Aotus nancymaae diarrheal challenge model. Combined, these data indicate that CS6, and more specifically, a recombinant engineered derivative should be considered for further clinical development.


Subject(s)
Enterotoxigenic Escherichia coli , Escherichia coli Infections , Escherichia coli Proteins , Escherichia coli Vaccines , Animals , Antibodies, Bacterial , Antigens, Bacterial/genetics , Aotidae , Enterotoxins/genetics , Escherichia coli Infections/prevention & control , Escherichia coli Infections/veterinary , Escherichia coli Proteins/genetics
2.
Mucosal Immunol ; 10(4): 887-900, 2017 07.
Article in English | MEDLINE | ID: mdl-27805617

ABSTRACT

Cholera toxin B subunit (CTB) is a component of a licensed oral cholera vaccine. However, CTB has pleiotropic immunomodulatory effects whose impacts on the gut are not fully understood. Here, we found that oral administration in mice of a plant-made recombinant CTB (CTBp) significantly increased several immune cell populations in the colon lamina propria. Global gene expression analysis revealed that CTBp had more pronounced impacts on the colon than the small intestine, with significant activation of TGFß-mediated pathways in the colon epithelium. The clinical relevance of CTBp-induced impacts on colonic mucosa was examined. In a human colon epithelial model using Caco2 cells, CTBp, but not the non-GM1-binding mutant G33D-CTBp, induced TGFß-mediated wound healing. In a dextran sodium sulfate (DSS) acute colitis mouse model, oral administration of CTBp protected against colon mucosal damage as manifested by mitigated body weight loss, decreased histopathological scores, and blunted escalation of inflammatory cytokine levels while inducing wound healing-related genes. Furthermore, biweekly oral administration of CTBp significantly reduced disease severity and tumorigenesis in the azoxymethane/DSS model of ulcerative colitis and colon cancer. Altogether, these results demonstrate CTBp's ability to enhance mucosal healing in the colon, highlighting its potential application in ulcerative colitis therapy besides cholera vaccination.


Subject(s)
Cholera Toxin/immunology , Cholera Vaccines/immunology , Cholera/immunology , Colitis, Ulcerative/immunology , Colon/pathology , Colonic Neoplasms/immunology , Mucous Membrane/immunology , Administration, Oral , Animals , Azoxymethane , Caco-2 Cells , Cholera/prevention & control , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/complications , Colonic Neoplasms/etiology , Colonic Neoplasms/prevention & control , Dextran Sulfate , Disease Models, Animal , Female , Humans , Mice , Mice, Inbred C57BL , Signal Transduction , Transforming Growth Factor beta/metabolism , Wound Healing
SELECTION OF CITATIONS
SEARCH DETAIL