Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Nat Genet ; 55(11): 1831-1842, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37845353

ABSTRACT

Abdominal aortic aneurysm (AAA) is a common disease with substantial heritability. In this study, we performed a genome-wide association meta-analysis from 14 discovery cohorts and uncovered 141 independent associations, including 97 previously unreported loci. A polygenic risk score derived from meta-analysis explained AAA risk beyond clinical risk factors. Genes at AAA risk loci indicate involvement of lipid metabolism, vascular development and remodeling, extracellular matrix dysregulation and inflammation as key mechanisms in AAA pathogenesis. These genes also indicate overlap between the development of AAA and other monogenic aortopathies, particularly via transforming growth factor ß signaling. Motivated by the strong evidence for the role of lipid metabolism in AAA, we used Mendelian randomization to establish the central role of nonhigh-density lipoprotein cholesterol in AAA and identified the opportunity for repurposing of proprotein convertase, subtilisin/kexin-type 9 (PCSK9) inhibitors. This was supported by a study demonstrating that PCSK9 loss of function prevented the development of AAA in a preclinical mouse model.


Subject(s)
Aortic Aneurysm, Abdominal , Genome-Wide Association Study , Humans , Animals , Mice , Proprotein Convertase 9/genetics , Proprotein Convertase 9/metabolism , Subtilisin , Proprotein Convertases , Aortic Aneurysm, Abdominal/genetics
2.
Nat Genet ; 55(7): 1106-1115, 2023 07.
Article in English | MEDLINE | ID: mdl-37308786

ABSTRACT

The current understanding of the genetic determinants of thoracic aortic aneurysms and dissections (TAAD) has largely been informed through studies of rare, Mendelian forms of disease. Here, we conducted a genome-wide association study (GWAS) of TAAD, testing ~25 million DNA sequence variants in 8,626 participants with and 453,043 participants without TAAD in the Million Veteran Program, with replication in an independent sample of 4,459 individuals with and 512,463 without TAAD from six cohorts. We identified 21 TAAD risk loci, 17 of which have not been previously reported. We leverage multiple downstream analytic methods to identify causal TAAD risk genes and cell types and provide human genetic evidence that TAAD is a non-atherosclerotic aortic disorder distinct from other forms of vascular disease. Our results demonstrate that the genetic architecture of TAAD mirrors that of other complex traits and that it is not solely inherited through protein-altering variants of large effect size.


Subject(s)
Aortic Aneurysm, Thoracic , Aortic Dissection , Veterans , Humans , Genome-Wide Association Study , Pedigree , Aortic Aneurysm, Thoracic/genetics , Aortic Dissection/genetics
4.
Am J Hum Genet ; 108(9): 1578-1589, 2021 09 02.
Article in English | MEDLINE | ID: mdl-34265237

ABSTRACT

Thoracic aortic aneurysm (TAA) is characterized by dilation of the aortic root or ascending/descending aorta. TAA is a heritable disease that can be potentially life threatening. While 10%-20% of TAA cases are caused by rare, pathogenic variants in single genes, the origin of the majority of TAA cases remains unknown. A previous study implicated common variants in FBN1 with TAA disease risk. Here, we report a genome-wide scan of 1,351 TAA-affected individuals and 18,295 control individuals from the Cardiovascular Health Improvement Project and Michigan Genomics Initiative at the University of Michigan. We identified a genome-wide significant association with TAA for variants within the third intron of TCF7L2 following replication with meta-analysis of four additional independent cohorts. Common variants in this locus are the strongest known genetic risk factor for type 2 diabetes. Although evidence indicates the presence of different causal variants for TAA and type 2 diabetes at this locus, we observed an opposite direction of effect. The genetic association for TAA colocalizes with an aortic eQTL of TCF7L2, suggesting a functional relationship. These analyses predict an association of higher expression of TCF7L2 with TAA disease risk. In vitro, we show that upregulation of TCF7L2 is associated with BCL2 repression promoting vascular smooth muscle cell apoptosis, a key driver of TAA disease.


Subject(s)
Aortic Aneurysm, Thoracic/genetics , Diabetes Mellitus, Type 2/genetics , Endothelial Cells/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Quantitative Trait Loci , Transcription Factor 7-Like 2 Protein/genetics , Aorta/metabolism , Aorta/pathology , Aortic Aneurysm, Thoracic/metabolism , Aortic Aneurysm, Thoracic/pathology , Case-Control Studies , Caspase 3/genetics , Caspase 3/metabolism , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Endothelial Cells/pathology , Gene Expression Regulation , Genome, Human , Genome-Wide Association Study , Humans , Introns , Michigan , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Mutation , Proto-Oncogene Proteins c-bcl-2/metabolism , Transcription Factor 7-Like 2 Protein/metabolism , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism
5.
J Biosci ; 462021.
Article in English | MEDLINE | ID: mdl-33709963

ABSTRACT

SARS-CoV-2 is a member of the Coronavirus family which recently originated from the Wuhan province of China and spread very rapidly through the world infecting more than 4 million people. In the past, other Coronaviruses have also been found to cause human infection, but not as widespread as COVID-19. Since Coronavirus sequences constantly change due to mutation and recombination, it is important to understand the pattern of changes and likely path the virus can take in the future. In this study, we have used the Shewhart control chart to identify and analyze hypervariable (hotspots) and hypovariable (coldspots) regions of the virus. Our analysis shows that SARS-CoV-2 has changed in a few regions of the genome. Analysis of SARS-CoV-1 and MERS sequences suggests that over time, mutations start accumulating in different regions and most likely SARS-CoV-2 may also follow a similar path. The results suggest a possible emergence of modified viruses over some time.


Subject(s)
Genetic Variation , Genome, Viral , SARS-CoV-2/genetics , China , Genomics/methods , Genomics/statistics & numerical data , Humans , Middle East Respiratory Syndrome Coronavirus/genetics , Polymorphism, Single Nucleotide , Severe acute respiratory syndrome-related coronavirus/genetics , SARS-CoV-2/isolation & purification , Viral Proteins/genetics
6.
Nat Commun ; 11(1): 6417, 2020 12 18.
Article in English | MEDLINE | ID: mdl-33339817

ABSTRACT

Pharmaceutical drugs targeting dyslipidemia and cardiovascular disease (CVD) may increase the risk of fatty liver disease and other metabolic disorders. To identify potential novel CVD drug targets without these adverse effects, we perform genome-wide analyses of participants in the HUNT Study in Norway (n = 69,479) to search for protein-altering variants with beneficial impact on quantitative blood traits related to cardiovascular disease, but without detrimental impact on liver function. We identify 76 (11 previously unreported) presumed causal protein-altering variants associated with one or more CVD- or liver-related blood traits. Nine of the variants are predicted to result in loss-of-function of the protein. This includes ZNF529:p.K405X, which is associated with decreased low-density-lipoprotein (LDL) cholesterol (P = 1.3 × 10-8) without being associated with liver enzymes or non-fasting blood glucose. Silencing of ZNF529 in human hepatoma cells results in upregulation of LDL receptor and increased LDL uptake in the cells. This suggests that inhibition of ZNF529 or its gene product should be prioritized as a novel candidate drug target for treating dyslipidemia and associated CVD.


Subject(s)
Cardiovascular Diseases/genetics , Genome, Human , Loss of Function Mutation/genetics , Molecular Targeted Therapy , Biological Specimen Banks , Cardiovascular Diseases/blood , Gene Silencing , Gene Targeting , Genome-Wide Association Study , Humans , Lipids/blood , Liver/metabolism , Phenomics , Receptors, LDL/genetics , United Kingdom
7.
Nat Commun ; 11(1): 3981, 2020 08 07.
Article in English | MEDLINE | ID: mdl-32769997

ABSTRACT

Thyroid stimulating hormone (TSH) is critical for normal development and metabolism. To better understand the genetic contribution to TSH levels, we conduct a GWAS meta-analysis at 22.4 million genetic markers in up to 119,715 individuals and identify 74 genome-wide significant loci for TSH, of which 28 are previously unreported. Functional experiments show that the thyroglobulin protein-altering variants P118L and G67S impact thyroglobulin secretion. Phenome-wide association analysis in the UK Biobank demonstrates the pleiotropic effects of TSH-associated variants and a polygenic score for higher TSH levels is associated with a reduced risk of thyroid cancer in the UK Biobank and three other independent studies. Two-sample Mendelian randomization using TSH index variants as instrumental variables suggests a protective effect of higher TSH levels (indicating lower thyroid function) on risk of thyroid cancer and goiter. Our findings highlight the pleiotropic effects of TSH-associated variants on thyroid function and growth of malignant and benign thyroid tumors.


Subject(s)
Genetic Pleiotropy , Genome-Wide Association Study , Thyroid Neoplasms/genetics , Thyrotropin/genetics , Genetic Loci , Genetic Predisposition to Disease , Goiter/genetics , Humans , Mendelian Randomization Analysis , Multifactorial Inheritance/genetics , Mutation, Missense/genetics , Phenotype , Physical Chromosome Mapping , Prevalence , Risk Factors , Thyroglobulin/genetics , Thyroid Neoplasms/epidemiology
8.
Nucleic Acids Res ; 47(6): 2766-2777, 2019 04 08.
Article in English | MEDLINE | ID: mdl-30773596

ABSTRACT

Structural variations (SVs) in the human genome originate from different mechanisms related to DNA repair, replication errors, and retrotransposition. Our analyses of 26 927 SVs from the 1000 Genomes Project revealed differential distributions and consequences of SVs of different origin, e.g. deletions from non-allelic homologous recombination (NAHR) are more prone to disrupt chromatin organization while processed pseudogenes can create accessible chromatin. Spontaneous double stranded breaks (DSBs) are the best predictor of enrichment of NAHR deletions in open chromatin. This evidence, along with strong physical interaction of NAHR breakpoints belonging to the same deletion suggests that majority of NAHR deletions are non-meiotic i.e. originate from errors during homology directed repair (HDR) of spontaneous DSBs. In turn, the origin of the spontaneous DSBs is associated with transcription factor binding in accessible chromatin revealing the vulnerability of functional, open chromatin. The chromatin itself is enriched with repeats, particularly fixed Alu elements that provide the homology required to maintain stability via HDR. Through co-localization of fixed Alus and NAHR deletions in open chromatin we hypothesize that old Alu expansion had a stabilizing role on the human genome.


Subject(s)
Chromatin/chemistry , Genome, Human , Genomic Structural Variation/genetics , Quantitative Trait, Heritable , Chromatin/metabolism , Chromosome Mapping , Computational Biology , DNA Breaks, Double-Stranded , DNA Damage/physiology , DNA Repair , Homologous Recombination , Humans , Recombinational DNA Repair
9.
Genomics ; 111(2): 205-211, 2019 03.
Article in English | MEDLINE | ID: mdl-29432978

ABSTRACT

In a context specific manner, Intra-species genomic variation plays an important role in phenotypic diversity observed among pathogenic microbes. Efficient classification of these pathogens is important for diagnosis and treatment of several infectious diseases. NGS technologies have provided access to wealth of data that can be utilized to discover important markers for pathogen classification. In this paper, we described three different approaches (Jensen-Shannon divergence, random forest and Shewhart control chart) for identification of a minimal set of SNPs that can be used for classification of organisms. These methods are generic and can be implemented for analysis of any organism. We have shown usefulness of these approaches for analysis of Mycobacterium tuberculosis and Escherichia coli isolates. We were able to identify a minimal set of 18 SNPs that can be used as molecular markers for phylogroup based classification and 8 SNPs for pathogroup based classification of E. coli.


Subject(s)
DNA Barcoding, Taxonomic/methods , Genome, Bacterial , Mycobacterium tuberculosis/genetics , Phylogeny , Polymorphism, Single Nucleotide , Whole Genome Sequencing/methods , Mycobacterium tuberculosis/classification , Mycobacterium tuberculosis/pathogenicity , Virulence/genetics
10.
Science ; 362(6420)2018 12 14.
Article in English | MEDLINE | ID: mdl-30545853

ABSTRACT

Genes implicated in neuropsychiatric disorders are active in human fetal brain, yet difficult to study in a longitudinal fashion. We demonstrate that organoids from human pluripotent cells model cerebral cortical development on the molecular level before 16 weeks postconception. A multiomics analysis revealed differentially active genes and enhancers, with the greatest changes occurring at the transition from stem cells to progenitors. Networks of converging gene and enhancer modules were assembled into six and four global patterns of expression and activity across time. A pattern with progressive down-regulation was enriched with human-gained enhancers, suggesting their importance in early human brain development. A few convergent gene and enhancer modules were enriched in autism-associated genes and genomic variants in autistic children. The organoid model helps identify functional elements that may drive disease onset.


Subject(s)
Cerebral Cortex/embryology , Epigenesis, Genetic , Gene Expression Regulation, Developmental , Models, Neurological , Neurogenesis/genetics , Organoids/embryology , Enhancer Elements, Genetic , Humans , Induced Pluripotent Stem Cells/cytology , Transcriptome
11.
PLoS One ; 13(10): e0205570, 2018.
Article in English | MEDLINE | ID: mdl-30325945

ABSTRACT

Many trematode parasites cause infection in humans and are thought to be a major public health problem. Their ecological diversity in different regions provides challenging questions on evolution of these organisms. In this report, we perform transcriptome analysis of the giant intestinal fluke, Fasciolopsis buski, using next generation sequencing technology. Short read sequences derived from polyA containing RNA of this organism were assembled into 30,677 unigenes that led to the annotation of 12,380 genes. Annotation of the assembled transcripts enabled insight into processes and pathways in the intestinal fluke, such as RNAi pathway and energy metabolism. The expressed kinome of the organism was characterized by identifying all protein kinases. A rough draft genome assembly for Fasciolopsis buski is also reported herewith with SRA accessions for crosschecking the findings in the analyzed transcriptome data. Transcriptome data also helped us to identify some of the expressed transposable elements. Though many Long Interspersed elements (LINEs) were identified, only two Short Interspersed Elements (SINEs) were visible. Overall transcriptome and draft genome analysis of F. buski helped us to characterize some of its important biological characteristics and provided enormous resources for development of a suitable diagnostic system and anti-parasitic therapeutic molecules.


Subject(s)
Fasciolidae/genetics , Fasciolidae/metabolism , Genome, Helminth , Transcriptome , Animals , Gene Expression Profiling , Genomics , Helminth Proteins/genetics , Helminth Proteins/metabolism , Humans , Long Interspersed Nucleotide Elements , Phylogeny , Sequence Homology , Short Interspersed Nucleotide Elements , Sus scrofa
12.
Science ; 359(6375): 550-555, 2018 02 02.
Article in English | MEDLINE | ID: mdl-29217587

ABSTRACT

Somatic mosaicism in the human brain may alter function of individual neurons. We analyzed genomes of single cells from the forebrains of three human fetuses (15 to 21 weeks postconception) using clonal cell populations. We detected 200 to 400 single-nucleotide variations (SNVs) per cell. SNV patterns resembled those found in cancer cell genomes, indicating a role of background mutagenesis in cancer. SNVs with a frequency of >2% in brain were also present in the spleen, revealing a pregastrulation origin. We reconstructed cell lineages for the first five postzygotic cleavages and calculated a mutation rate of ~1.3 mutations per division per cell. Later in development, during neurogenesis, the mutation spectrum shifted toward oxidative damage, and the mutation rate increased. Both neurogenesis and early embryogenesis exhibit substantially more mutagenesis than adulthood.


Subject(s)
Brain/embryology , Gastrulation/genetics , Mosaicism , Mutagenesis , Mutation Rate , Neurogenesis/genetics , Cell Lineage/genetics , Genome, Human , Humans , Mutation , Neoplasms/genetics , Neurons , Polymorphism, Single Nucleotide , Single-Cell Analysis
13.
Sci Rep ; 7: 46395, 2017 04 25.
Article in English | MEDLINE | ID: mdl-28440326

ABSTRACT

The mutifractal and long range correlation (C(r)) properties of strings, such as nucleotide sequence can be a useful parameter for identification of underlying patterns and variations. In this study C(r) and multifractal singularity function f(α) have been used to study variations in the genomes of a pathogenic bacteria Mycobacterium tuberculosis. Genomic sequences of M. tuberculosis isolates displayed significant variations in C(r) and f(α) reflecting inherent differences in sequences among isolates. M. tuberculosis isolates can be categorised into different subgroups based on sensitivity to drugs, these are DS (drug sensitive isolates), MDR (multi-drug resistant isolates) and XDR (extremely drug resistant isolates). C(r) follows significantly different scaling rules in different subgroups of isolates, but all the isolates follow one parameter scaling law. The richness in complexity of each subgroup can be quantified by the measures of multifractal parameters displaying a pattern in which XDR isolates have highest value and lowest for drug sensitive isolates. Therefore C(r) and multifractal functions can be useful parameters for analysis of genomic sequences.


Subject(s)
Genetic Variation , Genome, Bacterial , Mycobacterium tuberculosis/genetics , Drug Resistance, Multiple, Bacterial/genetics , Microbial Sensitivity Tests
14.
Sci Rep ; 5: 12567, 2015 Jul 28.
Article in English | MEDLINE | ID: mdl-26215170

ABSTRACT

Insertion sequence (IS) 6110 is found at multiple sites in the Mycobacterium tuberculosis genome and displays a high degree of polymorphism with respect to copy number and insertion sites. Therefore, IS6110 is considered to be a useful molecular marker for diagnosis and strain typing of M. tuberculosis. Generally IS6110 elements are identified using experimental methods, useful for analysis of a limited number of isolates. Since short read genome sequences generated using next-generation sequencing (NGS) platforms are available for a large number of isolates, a computational pipeline for identification of IS6110 elements from these datasets was developed. This study shows results from analysis of NGS data of 1377 M. tuberculosis isolates. These isolates represent all seven major global lineages of M. tuberculosis. Lineage specific copy number patterns and preferential insertion regions were observed. Intra-lineage differences were further analyzed for identifying spoligotype specific variations. Copy number distribution and preferential locations of IS6110 in different lineages imply independent evolution of IS6110, governed mainly through ancestral insertion, fitness (gene truncation, promoter activity) and recombinational loss of some copies. A phylogenetic tree based on IS6110 insertion data of different isolates was constructed in order to understand genome level variations of different markers across different lineages.


Subject(s)
Evolution, Molecular , Genome, Bacterial , Mycobacterium tuberculosis/genetics
15.
PLoS One ; 9(5): e96311, 2014.
Article in English | MEDLINE | ID: mdl-24802510

ABSTRACT

The cereal cyst nematode (CCN, Heterodera avenae) is a major pest of wheat (Triticum spp) that reduces crop yields in many countries. Cyst nematodes are obligate sedentary endoparasites that reproduce by amphimixis. Here, we report the first transcriptome analysis of two stages of H. avenae. After sequencing extracted RNA from pre parasitic infective juvenile and adult stages of the life cycle, 131 million Illumina high quality paired end reads were obtained which generated 27,765 contigs with N50 of 1,028 base pairs, of which 10,452 were annotated. Comparative analyses were undertaken to evaluate H. avenae sequences with those of other plant, animal and free living nematodes to identify differences in expressed genes. There were 4,431 transcripts common to H. avenae and the free living nematode Caenorhabditis elegans, and 9,462 in common with more closely related potato cyst nematode, Globodera pallida. Annotation of H. avenae carbohydrate active enzymes (CAZy) revealed fewer glycoside hydrolases (GHs) but more glycosyl transferases (GTs) and carbohydrate esterases (CEs) when compared to M. incognita. 1,280 transcripts were found to have secretory signature, presence of signal peptide and absence of transmembrane. In a comparison of genes expressed in the pre-parasitic juvenile and feeding female stages, expression levels of 30 genes with high RPKM (reads per base per kilo million) value, were analysed by qRT-PCR which confirmed the observed differences in their levels of expression levels. In addition, we have also developed a user-friendly resource, Heterodera transcriptome database (HATdb) for public access of the data generated in this study. The new data provided on the transcriptome of H. avenae adds to the genetic resources available to study plant parasitic nematodes and provides an opportunity to seek new effectors that are specifically involved in the H. avenae-cereal host interaction.


Subject(s)
Edible Grain/parasitology , Host-Parasite Interactions/genetics , Nematoda/genetics , Transcriptome/genetics , Triticum/parasitology , Animals , Gene Expression/genetics , Gene Expression Profiling/methods , Sequence Analysis, RNA/methods
16.
Sci Rep ; 3: 2634, 2013.
Article in English | MEDLINE | ID: mdl-24022334

ABSTRACT

Whole genome sequences are ideally suited for deriving evolutionary relationship among organisms. With the availability of Next Generation sequencing (NGS) datasets in an unprecedented scale, it will be highly desirable if phylogenetic analysis can be carried out using short read NGS data. We described here an anchor based approach NexABP for phylogenetic construction of closely related strains/isolates from NGS data. This approach can be used even in the absence of a fully assembled reference genome and works by reducing the complexity of the datasets without compromising results. NexABP was used for constructing phylogeny of different strains of some of the common pathogens, such as Mycobacterium tuberculosis, Vibrio cholera and Escherichia coli. In addition to classification into distinct lineages, NexABP could resolve inner branches and also allow statistical testing using bootstrap analysis. We believe that there are some clear advantages of using NexABP based phylogenetic analysis as compared to other methods.


Subject(s)
Computational Biology/methods , Genomics/methods , Phylogeny , Algorithms , Escherichia coli/classification , Escherichia coli/genetics , Genome , High-Throughput Nucleotide Sequencing , Humans , Mycobacterium tuberculosis/classification , Mycobacterium tuberculosis/genetics , Sequence Analysis, DNA , Vibrio cholerae/classification , Vibrio cholerae/genetics
17.
BMC Genomics ; 14: 404, 2013 Jun 17.
Article in English | MEDLINE | ID: mdl-23773324

ABSTRACT

BACKGROUND: Tuberculosis remains a major public health problem. Clinical tuberculosis manifests often as pulmonary and occasionally as extra-pulmonary tuberculosis. The emergence of drug resistant tubercle bacilli and its association with HIV is a formidable challenge to curb the spread of tuberculosis. There have been concerted efforts by whole genome sequencing and bioinformatics analysis to identify genomic patterns and to establish a relationship between the genotype of the organism and clinical manifestation of tuberculosis. Extra-pulmonary TB constitutes 15-20 percent of the total clinical cases of tuberculosis reported among immunocompetent patients, whereas among HIV patients the incidence is more than 50 percent. Genomic analysis of M. tuberculosis isolates from extra pulmonary patients has not been explored. RESULTS: The genomic DNA of 5 extra-pulmonary clinical isolates of M. tuberculosis derived from cerebrospinal fluid, lymph node fine needle aspirates (FNAC) / biopsies, were sequenced. Next generation sequencing approach (NGS) was employed to identify Single Nucleotide Variations (SNVs) and computational methods used to predict their consequence on functional genes. Analysis of distribution of SNVs led to the finding that there are mixed genotypes in patient isolates and that many SNVs are likely to influence either gene function or their expression. Phylogenetic relationship between the isolates correlated with the origin of the isolates. In addition, insertion sites of IS elements were identified and their distribution revealed a variation in number and position of the element in the 5 extra-pulmonary isolates compared to the reference M. tuberculosis H37Rv strain. CONCLUSIONS: The results suggest that NGS sequencing is able to identify small variations in genomes of M. tuberculosis isolates including changes in IS element insertion sites. Moreover, variations in isolates of M. tuberculosis from non-pulmonary sites were documented. The analysis of our results indicates genomic heterogeneity in the clinical isolates.


Subject(s)
Genetic Heterogeneity , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/isolation & purification , Sequence Analysis , Tuberculosis/microbiology , DNA Transposable Elements/genetics , Genomics , Humans , Molecular Sequence Annotation , Phylogeny , Polymorphism, Single Nucleotide/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...