Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Am J Bot ; : e16376, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39020509

ABSTRACT

PREMISE: The Aptian-Albian (121.4-100.5 Ma) was a greenhouse period with global temperatures estimated as 10-15°C warmer than pre-industrial conditions, so it is surprising that the most reliable CO2 estimates from this time are <1400 ppm. This low CO2 during a warm period implies a very high Earth-system sensitivity in the range of 6 to 9°C per CO2 doubling between the Aptian-Albian and today. METHODS: We applied a well-vetted paleo-CO2 proxy based on leaf gas-exchange principles (Franks model) to two Pseudotorellia species from three stratigraphically similar samples at the Tevshiin Govi lignite mine in central Mongolia (~119.7-100.5 Ma). RESULTS: Our median estimated CO2 concentration from the three respective samples was 2132, 2405, and 2770 ppm. The primary reason for the high estimated CO2 but with relatively large uncertainties is the very low stomatal density in both species, where small variations propagate to large changes in estimated CO2. Indeed, we found that at least 15 leaves are required before the aggregate estimated CO2 approaches that of the full data set. CONCLUSIONS: Our three CO2 estimates all exceeded 2000 ppm, translating to an Earth-system sensitivity (~3-5°C/CO2 doubling) that is more in keeping with the current understanding of the long-term climate system. Because of our large sample size, the directly measured inputs did not contribute much to the overall uncertainty in estimated CO2; instead, the inferred inputs were responsible for most of the overall uncertainty and thus should be scrutinized for their value choices.

2.
Science ; 382(6675): eadi5177, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38060645

ABSTRACT

The geological record encodes the relationship between climate and atmospheric carbon dioxide (CO2) over long and short timescales, as well as potential drivers of evolutionary transitions. However, reconstructing CO2 beyond direct measurements requires the use of paleoproxies and herein lies the challenge, as proxies differ in their assumptions, degree of understanding, and even reconstructed values. In this study, we critically evaluated, categorized, and integrated available proxies to create a high-fidelity and transparently constructed atmospheric CO2 record spanning the past 66 million years. This newly constructed record provides clearer evidence for higher Earth system sensitivity in the past and for the role of CO2 thresholds in biological and cryosphere evolution.

3.
Front Plant Sci ; 13: 894690, 2022.
Article in English | MEDLINE | ID: mdl-35783978

ABSTRACT

The Chicxulub bolide impact has been linked to a mass extinction of plants at the Cretaceous-Paleogene boundary (KPB; ∼66 Ma), but how this extinction affected plant ecological strategies remains understudied. Previous work in the Williston Basin, North Dakota, indicates that plants pursuing strategies with a slow return-on-investment of nutrients abruptly vanished after the KPB, consistent with a hypothesis of selection against evergreen species during the globally cold and dark impact winter that followed the bolide impact. To test whether this was a widespread pattern we studied 1,303 fossil leaves from KPB-spanning sediments in the Denver Basin, Colorado. We used the relationship between petiole width and leaf mass to estimate leaf dry mass per area (LMA), a leaf functional trait negatively correlated with rate of return-on-investment. We found no evidence for a shift in this leaf-economic trait across the KPB: LMA remained consistent in both its median and overall distribution from approximately 67 to 65 Ma. However, we did find spatio-temporal patterns in LMA, where fossil localities with low LMA occurred more frequently near the western margin of the basin. These western margin localities are proximal to the Colorado Front Range of the Rocky Mountains, where an orographically driven high precipitation regime is thought to have developed during the early Paleocene. Among these western Denver Basin localities, LMA and estimated mean annual precipitation were inversely correlated, a pattern consistent with observations of both fossil and extant plants. In the Denver Basin, local environmental conditions over time appeared to play a larger role in determining viable leaf-economic strategies than any potential global signal associated with the Chicxulub bolide impact.

4.
Ann Bot ; 128(4): 395-406, 2021 09 03.
Article in English | MEDLINE | ID: mdl-34157097

ABSTRACT

BACKGROUND AND AIMS: Leaf size has considerable ecological relevance, making it desirable to obtain leaf size estimations for as many species worldwide as possible. Current global databases, such as TRY, contain leaf size data for ~30 000 species, which is only ~8% of known species worldwide. Yet, taxonomic descriptions exist for the large majority of the remainder. Here we propose a simple method to exploit information on leaf length, width and shape from species descriptions to robustly estimate leaf areas, thus closing this considerable knowledge gap for this important plant functional trait. METHODS: Using a global dataset of all major leaf shapes measured on 3125 leaves from 780 taxa, we quantified scaling functions that estimate leaf size as a product of leaf length, width and a leaf shape-specific correction factor. We validated our method by comparing leaf size estimates with those obtained from image recognition software and compared our approach with the widely used correction factor of 2/3. KEY RESULTS: Correction factors ranged from 0.39 for highly dissected, lobed leaves to 0.79 for oblate leaves. Leaf size estimation using leaf shape-specific correction factors was more accurate and precise than estimates obtained from the correction factor of 2/3. CONCLUSION: Our method presents a tractable solution to accurately estimate leaf size when only information on leaf length, width and shape is available or when labour and time constraints prevent usage of image recognition software. We see promise in applying our method to data from species descriptions (including from fossils), databases, field work and on herbarium vouchers, especially when non-destructive in situ measurements are needed.


Subject(s)
Plant Leaves , Software , Plants
5.
Nat Commun ; 12(1): 3173, 2021 05 26.
Article in English | MEDLINE | ID: mdl-34039993

ABSTRACT

The long-term temperature response to a given change in CO2 forcing, or Earth-system sensitivity (ESS), is a key parameter quantifying our understanding about the relationship between changes in Earth's radiative forcing and the resulting long-term Earth-system response. Current ESS estimates are subject to sizable uncertainties. Long-term carbon cycle models can provide a useful avenue to constrain ESS, but previous efforts either use rather informal statistical approaches or focus on discrete paleoevents. Here, we improve on previous ESS estimates by using a Bayesian approach to fuse deep-time CO2 and temperature data over the last 420 Myrs with a long-term carbon cycle model. Our median ESS estimate of 3.4 °C (2.6-4.7 °C; 5-95% range) shows a narrower range than previous assessments. We show that weaker chemical weathering relative to the a priori model configuration via reduced weatherable land area yields better agreement with temperature records during the Cretaceous. Research into improving the understanding about these weathering mechanisms hence provides potentially powerful avenues to further constrain this fundamental Earth-system property.

6.
Am J Bot ; 107(12): 1772-1785, 2020 12.
Article in English | MEDLINE | ID: mdl-33290590

ABSTRACT

PREMISE: The Eocene-Oligocene transition (EOT; 34-33 Ma) was marked by global cooling and increased seasonality and aridity, leading to a shift in North American floras from subtropical forests to deciduous hardwood forests similar to today. This shift is well documented taxonomically and biogeographically, but its ecological nature is less known. METHODS: Using the relationship between petiole cross-sectional area and leaf mass, we estimated leaf dry mass per area (LMA), a functional trait tied to plant resource investment and expenditure, at 22 western North American sites spanning the EOT to determine how the broad restructuring of vegetation during this time was reflected in leaf economics. RESULTS: There was no overall shift in LMA between pre-EOT and post-EOT floras; instead, changes in LMA across sites were mostly driven by a negative correlation with dry-season precipitation and a positive correlation with paleoelevation. These patterns held for both whole sites and subsets of sites containing taxa with similar biogeographical histories (taxa that persisted in the highlands across the EOT or that migrated to the lowlands) and are consistent with most observations in extant floras. CONCLUSIONS: Our data provide a geological context for understanding environmentally paced changes in leaf-economic strategies, particularly linking leaf economic strategies to dry-season precipitation and paleoelevation.


Subject(s)
Forests , Plant Leaves , Plants , Seasons
7.
PLoS One ; 14(6): e0218884, 2019.
Article in English | MEDLINE | ID: mdl-31226157

ABSTRACT

In many woody dicot plant species, colder temperatures correlate with a greater degree of leaf dissection and with larger and more abundant leaf teeth (the serrated edges along margins). The measurement of site-mean characteristics of leaf size and shape (physiognomy), including leaf dissection and tooth morphology, has been an important paleoclimate tool for over a century. These physiognomic-based climate proxies require that all woody dicot plants at a site, regardless of species, change their leaf shape rapidly and predictably in response to temperature. Here we experimentally test these assumptions by growing five woody species in growth cabinets under two temperatures (17 and 25°C). In keeping with global site-based patterns, plants tend to develop more dissected leaves with more abundant and larger leaf teeth in the cool treatment. Overall, this upholds the assumption that leaf shape responds in a particular direction to temperature change. The assumption that leaf shape variables respond to temperature in the same way regardless of species did not hold because the responses varied by species. Leaf physiognomic models for inferring paleoclimate should take into account these species-specific responses.


Subject(s)
Acer/growth & development , Betula/growth & development , Betulaceae/growth & development , Plant Leaves/anatomy & histology , Quercus/growth & development , Acer/anatomy & histology , Betula/anatomy & histology , Betulaceae/anatomy & histology , Climate , Cold Temperature , Hot Temperature , Quercus/anatomy & histology , Seeds/growth & development , Species Specificity
8.
Am J Bot ; 105(11): 1929-1937, 2018 11.
Article in English | MEDLINE | ID: mdl-30418663

ABSTRACT

PREMISE OF THE STUDY: The global climate during the early Miocene was warmer than the present and preceded the even warmer middle Miocene climatic optimum. The paleo-CO2 records for this interval suggest paradoxically low concentrations (<450 ppm) that are difficult to reconcile with a warmer-than-present global climate. METHODS: In this study, we use a leaf gas-exchange model to estimate CO2 concentrations using stomatal characteristics of fossil leaves from a late early Miocene Neotropical assemblage from Panama that we date to 18.01 ± 0.17 Ma via 238 U/206 Pb zircon geochronology. We first validated the model for Neotropical environments by estimating CO2 from canopy leaves of 21 extant species in a natural Panamanian forest and from leaves of seven Neotropical species in greenhouse experiments at 400 and 700 ppm. KEY RESULTS: The results showed that the most probable combined CO2 estimate from the natural forests and 400 ppm experiments is 475 ppm, and for the 700 ppm experiments is 665 ppm. CO2 estimates from the five fossil species exhibit bimodality, with two species most consistent with a low mode (528 ppm) and three with a high mode (912 ppm). CONCLUSIONS: Despite uncertainties, it is very likely (at >95% confidence) that CO2 during the late early Miocene exceeded 400 ppm. These results revise upwards the likely CO2 concentration at this time, more in keeping with a CO2 -forced greenhouse climate.


Subject(s)
Atmosphere/chemistry , Carbon Dioxide , Climate , Fossils , Plant Stomata/physiology , Models, Biological
9.
Nat Commun ; 8: 14845, 2017 04 04.
Article in English | MEDLINE | ID: mdl-28375201

ABSTRACT

The evolution of Earth's climate on geological timescales is largely driven by variations in the magnitude of total solar irradiance (TSI) and changes in the greenhouse gas content of the atmosphere. Here we show that the slow ∼50 Wm-2 increase in TSI over the last ∼420 million years (an increase of ∼9 Wm-2 of radiative forcing) was almost completely negated by a long-term decline in atmospheric CO2. This was likely due to the silicate weathering-negative feedback and the expansion of land plants that together ensured Earth's long-term habitability. Humanity's fossil-fuel use, if unabated, risks taking us, by the middle of the twenty-first century, to values of CO2 not seen since the early Eocene (50 million years ago). If CO2 continues to rise further into the twenty-third century, then the associated large increase in radiative forcing, and how the Earth system would respond, would likely be without geological precedent in the last half a billion years.

10.
Science ; 348(6240): 1210-1, 2015 Jun 12.
Article in English | MEDLINE | ID: mdl-26068835
13.
PLoS Biol ; 12(9): e1001949, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25225914

ABSTRACT

The Chicxulub bolide impact caused the end-Cretaceous mass extinction of plants, but the associated selectivity and ecological effects are poorly known. Using a unique set of North Dakota leaf fossil assemblages spanning 2.2 Myr across the event, we show among angiosperms a reduction of ecological strategies and selection for fast-growth strategies consistent with a hypothesized recovery from an impact winter. Leaf mass per area (carbon investment) decreased in both mean and variance, while vein density (carbon assimilation rate) increased in mean, consistent with a shift towards "fast" growth strategies. Plant extinction from the bolide impact resulted in a shift in functional trait space that likely had broad consequences for ecosystem functioning.


Subject(s)
Extinction, Biological , Fossils/anatomy & histology , Magnoliopsida/physiology , Models, Statistical , Plant Leaves/physiology , Adaptation, Physiological , Carbon/metabolism , Ecosystem , Magnoliopsida/anatomy & histology , North Dakota , Plant Leaves/anatomy & histology
14.
Am J Bot ; 101(2): 338-47, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24509795

ABSTRACT

PREMISE OF THE STUDY: Relationships of leaf size and shape (physiognomy) with climate have been well characterized for woody non-monocotyledonous angiosperms (dicots), allowing the development of models for estimating paleoclimate from fossil leaves. More recently, petiole width of seed plants has been shown to scale closely with leaf mass. By measuring petiole width and leaf area in fossils, leaf mass per area (MA) can be estimated and an approximate leaf life span inferred. However, little is known about these relationships in ferns, a clade with a deep fossil record and with the potential to greatly expand the applicability of these proxies. METHODS: We measured the petiole width, MA, and leaf physiognomic characters of 179 fern species from 188 locations across six continents. We applied biomechanical models and assessed the relationship between leaf physiognomy and climate using correlational approaches. KEY RESULTS: The scaling relationship between area-normalized petiole width and MA differs between fern fronds and pinnae. The scaling relationship is best modeled as an end-loaded cantilevered beam, which is different from the best-fit biomechanical model for seed plants. Fern leaf physiognomy is not influenced by climatic conditions. CONCLUSIONS: The cantilever beam model can be applied to fossil ferns. The lack of sensitivity of leaf physiognomy to climate in ferns argues against their use to reconstruct paleoclimate. Differences in climate sensitivity and biomechanical relationships between ferns and seed plants may be driven by differences in their hydraulic conductivity and/or their differing evolutionary histories of vein architecture and leaf morphology.


Subject(s)
Biological Evolution , Climate , Ferns/anatomy & histology , Magnoliopsida/anatomy & histology , Plant Leaves/anatomy & histology , Biomechanical Phenomena , Fossils , Seeds
15.
Nature ; 506(7486): 89-92, 2014 Feb 06.
Article in English | MEDLINE | ID: mdl-24362564

ABSTRACT

Early flowering plants are thought to have been woody species restricted to warm habitats. This lineage has since radiated into almost every climate, with manifold growth forms. As angiosperms spread and climate changed, they evolved mechanisms to cope with episodic freezing. To explore the evolution of traits underpinning the ability to persist in freezing conditions, we assembled a large species-level database of growth habit (woody or herbaceous; 49,064 species), as well as leaf phenology (evergreen or deciduous), diameter of hydraulic conduits (that is, xylem vessels and tracheids) and climate occupancies (exposure to freezing). To model the evolution of species' traits and climate occupancies, we combined these data with an unparalleled dated molecular phylogeny (32,223 species) for land plants. Here we show that woody clades successfully moved into freezing-prone environments by either possessing transport networks of small safe conduits and/or shutting down hydraulic function by dropping leaves during freezing. Herbaceous species largely avoided freezing periods by senescing cheaply constructed aboveground tissue. Growth habit has long been considered labile, but we find that growth habit was less labile than climate occupancy. Additionally, freezing environments were largely filled by lineages that had already become herbs or, when remaining woody, already had small conduits (that is, the trait evolved before the climate occupancy). By contrast, most deciduous woody lineages had an evolutionary shift to seasonally shedding their leaves only after exposure to freezing (that is, the climate occupancy evolved before the trait). For angiosperms to inhabit novel cold environments they had to gain new structural and functional trait solutions; our results suggest that many of these solutions were probably acquired before their foray into the cold.


Subject(s)
Biological Evolution , Cold Climate , Ecosystem , Freezing , Magnoliopsida/anatomy & histology , Magnoliopsida/physiology , Xylem/anatomy & histology , Likelihood Functions , Phylogeography , Plant Leaves/anatomy & histology , Plant Leaves/physiology , Seeds/physiology , Time Factors , Wood/anatomy & histology , Wood/physiology , Xylem/physiology
16.
Proc Biol Sci ; 280(1764): 20131024, 2013 Aug 07.
Article in English | MEDLINE | ID: mdl-23760866

ABSTRACT

Models generally predict a response in species richness to climate, but strong climate-diversity associations are seldom observed in long-term (more than 10(6) years) fossil records. Moreover, fossil studies rarely distinguish between the effects of atmospheric CO2 and temperature, which limits their ability to identify the causal controls on biodiversity. Plants are excellent organisms for testing climate-diversity hypotheses owing to their strong sensitivity to CO2, temperature and moisture. We find that pollen morphospecies richness in an angiosperm-dominated record from the Palaeogene and early Neogene (65-20 Ma) of Colombia and Venezuela correlates positively to CO2 much more strongly than to temperature (both tropical sea surface temperatures and estimates of global mean surface temperature). The weaker sensitivity to temperature may be due to reduced variance in long-term climate relative to in higher latitudes, or to the occurrence of lethal or sub-lethal temperatures during the warmest times of the Eocene. Physiological models predict that productivity should be the most sensitive to CO2 within the angiosperms, a prediction supported by our analyses if productivity is linked to species richness; however, evaluations of non-angiosperm assemblages are needed to more completely test this idea.


Subject(s)
Biodiversity , Carbon Dioxide , Temperature , Trees , Colombia , Data Interpretation, Statistical , Magnoliopsida , Models, Theoretical , Pollen , Regression Analysis , Tropical Climate , Venezuela
17.
PLoS One ; 7(11): e49559, 2012.
Article in English | MEDLINE | ID: mdl-23152921

ABSTRACT

The degree of leaf dissection and the presence of leaf teeth, along with tooth size and abundance, inversely correlate with mean annual temperature (MAT) across many plant communities. These relationships form the core of several methods for reconstructing MAT from fossils, yet the direct selection of temperature on tooth morphology has not been demonstrated experimentally. It is also not known if atmospheric CO(2) concentration affects leaf shape, limiting confidence in ancient climate reconstructions because CO(2) has varied widely on geologic timescales. Here I report the results of growing Acer rubrum (red maple) in growth cabinets at contrasting temperature and CO(2) conditions. The CO(2) treatment imparted no significant differences in leaf size and shape, while plants grown at cooler temperatures tended to have more teeth and more highly dissected leaves. These results provide direct evidence for the selection of temperature on leaf shape in one species, and support a key link in many leaf-climate methods. More broadly, these results increase confidence for using leaf shape in fossils to reconstruct paleoclimate.


Subject(s)
Acer/anatomy & histology , Acer/drug effects , Carbon Dioxide/pharmacology , Plant Leaves/anatomy & histology , Plant Leaves/drug effects , Temperature , Organ Size/drug effects , Statistics as Topic
18.
Am J Bot ; 99(5): 915-22, 2012 May.
Article in English | MEDLINE | ID: mdl-22494908

ABSTRACT

PREMISE OF THE STUDY: Leaf-margin state (toothed vs. untoothed) forms the basis of several popular methods for reconstructing temperature. Some potential confounding factors have not been investigated with large data sets, limiting our understanding of the adaptive significance of leaf teeth and their reliability to reconstruct paleoclimate. Here we test the strength of correlations between leaf-margin state and deciduousness, leaf thickness, wood type (ring-porous vs. diffuse-porous), height within community, and several leaf economic variables. METHODS: We assembled a trait database for 3549 species from six continents based on published and original data. The strength of associations between traits was quantified using correlational and principal axes approaches. KEY RESULTS: Toothed species, independent of temperature, are more likely to be deciduous and to have thin leaves, a high leaf nitrogen concentration, a low leaf mass per area, and ring-porous wood. Canopy trees display the highest sensitivity between leaf-margin state and temperature; subcanopy plants, especially herbs, are less sensitive. CONCLUSIONS: Our data support hypotheses linking the adaptive significance of teeth to leaf thickness and deciduousness (in addition to temperature). Toothed species associate with the "fast-return" end of the leaf economic spectrum, providing another functional link to thin leaves and the deciduous habit. Accounting for these confounding factors should improve climate estimates from tooth-based methods.


Subject(s)
Climate , Plant Leaves/anatomy & histology , Plant Leaves/physiology , Quantitative Trait, Heritable , Biomass , Geography , Logistic Models , Principal Component Analysis , Sample Size , Temperature
19.
Science ; 335(6072): 1058-63, 2012 Mar 02.
Article in English | MEDLINE | ID: mdl-22383840

ABSTRACT

Ocean acidification may have severe consequences for marine ecosystems; however, assessing its future impact is difficult because laboratory experiments and field observations are limited by their reduced ecologic complexity and sample period, respectively. In contrast, the geological record contains long-term evidence for a variety of global environmental perturbations, including ocean acidification plus their associated biotic responses. We review events exhibiting evidence for elevated atmospheric CO(2), global warming, and ocean acidification over the past ~300 million years of Earth's history, some with contemporaneous extinction or evolutionary turnover among marine calcifiers. Although similarities exist, no past event perfectly parallels future projections in terms of disrupting the balance of ocean carbonate chemistry-a consequence of the unprecedented rapidity of CO(2) release currently taking place.


Subject(s)
Aquatic Organisms , Ecosystem , Geological Phenomena , Seawater/chemistry , Adaptation, Biological , Animals , Atmosphere , Carbon Dioxide , Carbonates/analysis , Extinction, Biological , Forecasting , Fossils , Hydrogen-Ion Concentration , Oceans and Seas
20.
New Phytol ; 190(3): 724-39, 2011 May.
Article in English | MEDLINE | ID: mdl-21294735

ABSTRACT

• Paleobotanists have long used models based on leaf size and shape to reconstruct paleoclimate. However, most models incorporate a single variable or use traits that are not physiologically or functionally linked to climate, limiting their predictive power. Further, they often underestimate paleotemperature relative to other proxies. • Here we quantify leaf-climate correlations from 92 globally distributed, climatically diverse sites, and explore potential confounding factors. Multiple linear regression models for mean annual temperature (MAT) and mean annual precipitation (MAP) are developed and applied to nine well-studied fossil floras. • We find that leaves in cold climates typically have larger, more numerous teeth, and are more highly dissected. Leaf habit (deciduous vs evergreen), local water availability, and phylogenetic history all affect these relationships. Leaves in wet climates are larger and have fewer, smaller teeth. Our multivariate MAT and MAP models offer moderate improvements in precision over univariate approaches (± 4.0 vs 4.8°C for MAT) and strong improvements in accuracy. For example, our provisional MAT estimates for most North American fossil floras are considerably warmer and in better agreement with independent paleoclimate evidence. • Our study demonstrates that the inclusion of additional leaf traits that are functionally linked to climate improves paleoclimate reconstructions. This work also illustrates the need for better understanding of the impact of phylogeny and leaf habit on leaf-climate relationships.


Subject(s)
Climate , Internationality , Paleontology , Plant Leaves/anatomy & histology , Calibration , Fossils , Geography , Models, Biological , Organ Size , Phylogeny , Rain , Regression Analysis , Species Specificity , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL