Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Front Chem ; 12: 1384025, 2024.
Article in English | MEDLINE | ID: mdl-38606080

ABSTRACT

Advances in the design of novel porous materials open new avenues for the development of chromatographic solid stationary phases. Covalent organic frameworks (COFs) are promising candidates in this context due to their remarkable structural versatility and exceptional chemical and textural properties. In this minireview, we summarize the main strategies followed in recent years to apply these materials as stationary phases for chromatographic separations. We also comment on the perspectives of this new research field and potential directions to expand the applicability and implementation of COF stationary phases in analytical systems.

2.
RSC Adv ; 11(5): 2701-2705, 2021 Jan 11.
Article in English | MEDLINE | ID: mdl-35424226

ABSTRACT

A conjugated poly(azomethine) network based on ambipolar terthiophene-naphthalimide assemblies has been synthesized and its electrochemical and UV-vis absorption properties have been investigated. The network has been found to be a promising candidate for the photocatalytic degradation of organic pollutants in aqueous media.

3.
Chemistry ; 26(29): 6495-6498, 2020 May 20.
Article in English | MEDLINE | ID: mdl-32057159

ABSTRACT

The copper-catalyzed azide-alkyne cycloaddition (CuAAC) click reaction is among the most extensively used strategies for the post-polymerization modification of COFs. This work shows a new procedure for the postsynthetic functionalization of imine-based COFs by using a heterogeneous solid-gas reaction between alkyne-functionalized COFs and azides in the absence of a copper catalyst. This new alternative represents a step forward towards a greener postsynthetic modification of COFs opening a high potential for the development of new applications.

4.
Chem Commun (Camb) ; 56(8): 1267-1270, 2020 Jan 28.
Article in English | MEDLINE | ID: mdl-31903455

ABSTRACT

A novel naphthalene diimide-based covalent organic framework (NDI-COF) has been synthesized and successfully exfoliated into COF nanosheets (CONs). Electrochemical measurements reveal that the naphthalene diimide units incorporated into NDI-CONs act as efficient electrocatalyst for oxygen reduction in alkaline media, showing its potential for the development of metal-free fuel cells.

5.
Chemistry ; 25(53): 12394-12404, 2019 Sep 20.
Article in English | MEDLINE | ID: mdl-31265184

ABSTRACT

Lithium-sulfur batteries stands out as a promising technology for energy storage owing to a combination of favorable characteristics including a high theoretical gravimetric capacity, energy density, inexpensive character, and environmental benignity. Covalent organic frameworks (COFs) are a rapidly developing family of functional nanostructures which combine porosity and crystallinity, and which have been already used in these kinds of batteries to build sulfur electrodes, by embedding sulfur into porous COFs in order to enhance cycle lifetimes. In this contribution, this is taken one step forward and a COF endowed with vinyl groups is used, in order to graft sulfur to the COF skeleton through inverse vulcanization. The main aim of the article is to show the synergistic effect of covalent bonding and physical encapsulation of sulfur in the pores of the COF in order to alleviate the fatal redox shuttling process, to improve the cycling performance, and to provide faster ion diffusion pathways. In addition, it is shown how the material with covalently-bound S provides better electrochemical performance under demanding and/or changeable charge conditions than a parent analogue material with sulfur physically confined, but without covalent linkage.

6.
Chem Soc Rev ; 48(14): 3903-3945, 2019 Jul 15.
Article in English | MEDLINE | ID: mdl-31187790

ABSTRACT

Covalent organic frameworks (COFs) are organic porous materials with many potential applications, which very often depend on the presence of chemical functionality at the organic building blocks. Functionality that cannot be introduced into COFs directly via de novo syntheses can be accessed through post-synthetic modification (PSM) strategies. Current strategies for the post-synthetic modification of COFs involve (i) incorporation of a variety of active metal species by using metal complexation through coordination chemistry, (ii) covalent bond formation between existing pendant groups and incoming constituents and (iii) chemical conversion of linkages. (iv) The post-synthetic modification is sometimes assisted by a monomer truncation strategy for the internal functionalization of COFs. (v) Even more intriguing methods that go beyond PSM are herein termed building block exchange (BBE) which encompasses framework-to-framework transformations taking advantage of the fact that reversible bond formation is a characteristic feature of COFs. This strategy allows the use of protoCOF structures (i.e., the utilization of a parent COF as a template) for the evolution of new COF structures with completely new components.

7.
Materials (Basel) ; 12(12)2019 Jun 19.
Article in English | MEDLINE | ID: mdl-31248117

ABSTRACT

A series of imine-based covalent organic frameworks decorated in their cavities with different alkynyl, pyrrolidine, and N-methylpyrrolidine functional groups have been synthetized. These materials exhibit catalytic activity in aqueous media for the hydrolytic detoxification of nerve agents, as exemplified with nerve gas simulant diisopropylfluorophosphate (DIFP). These preliminary results suggest imine-based covalent organic frameworks (COFs) as promising materials for detoxification of highly toxic molecules.

8.
Chem Commun (Camb) ; 54(63): 8729-8732, 2018 Aug 14.
Article in English | MEDLINE | ID: mdl-30027197

ABSTRACT

An imine-based covalent organic framework (COF) decorated in its cavities with uracil groups has shown selective recognition towards adenine in water. These results show how the confinement of the base-pair inside the COF's pores allows a remarkable selective recognition in aqueous media.

9.
Philos Trans A Math Phys Eng Sci ; 373(2057)2015 Dec 28.
Article in English | MEDLINE | ID: mdl-26574525

ABSTRACT

The deposition of Ni nanoparticles into porous supports is very important in catalysis. In this paper, we explore the use of supercritical CO(2) (scCO(2)) as a green solvent to deposit Ni nanoparticles on mesoporous SiO2 SBA-15 and a carbon xerogel. The good transport properties of scCO(2) allowed the efficient penetration of metal precursors dissolved in scCO(2) within the pores of the support without damaging its structure. Nickel hexafluoroacetylacetonate hydrate, nickel acetylacetonate, bis(cyclopentadienyl)nickel, Ni(NO(3))2⋅6H(2)O and NiCl(2)⋅6H(2)O were tried as precursors. Different methodologies were used: impregnation in scCO(2) and reduction in H(2)/N(2) at 400°C and low pressure, reactive deposition using H(2) at 200-250°C in scCO(2) and reactive deposition using ethanol at 150-200°C in scCO(2). The effect of precursor and methodology on the nickel particle size and the material homogeneity (on the different substrates) was analysed. This technology offers many opportunities in the preparation of metal-nanostructured materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...