Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters











Publication year range
1.
Ann Neurol ; 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39096015

ABSTRACT

OBJECTIVE: To understand the etiological landscape and phenotypic differences between 2 developmental and epileptic encephalopathy (DEE) syndromes: DEE with spike-wave activation in sleep (DEE-SWAS) and epileptic encephalopathy with spike-wave activation in sleep (EE-SWAS). METHODS: All patients fulfilled International League Against Epilepsy (ILAE) DEE-SWAS or EE-SWAS criteria with a Core cohort (n = 91) drawn from our Epilepsy Genetics research program, together with 10 etiologically solved patients referred by collaborators in the Expanded cohort (n = 101). Detailed phenotyping and analysis of molecular genetic results were performed. We compared the phenotypic features of individuals with DEE-SWAS and EE-SWAS. Brain-specific gene co-expression analysis was performed for D/EE-SWAS genes. RESULTS: We identified the etiology in 42/91 (46%) patients in our Core cohort, including 29/44 (66%) with DEE-SWAS and 13/47 (28%) with EE-SWAS. A genetic etiology was identified in 31/91 (34%). D/EE-SWAS genes were highly co-expressed in brain, highlighting the importance of channelopathies and transcriptional regulators. Structural etiologies were found in 12/91 (13%) individuals. We identified 10 novel D/EE-SWAS genes with a range of functions: ATP1A2, CACNA1A, FOXP1, GRIN1, KCNMA1, KCNQ3, PPFIA3, PUF60, SETD1B, and ZBTB18, and 2 novel copy number variants, 17p11.2 duplication and 5q22 deletion. Although developmental regression patterns were similar in both syndromes, DEE-SWAS was associated with a longer duration of epilepsy and poorer intellectual outcome than EE-SWAS. INTERPRETATION: DEE-SWAS and EE-SWAS have highly heterogeneous genetic and structural etiologies. Phenotypic analysis highlights valuable clinical differences between DEE-SWAS and EE-SWAS which inform clinical care and prognostic counseling. Our etiological findings pave the way for the development of precision therapies. ANN NEUROL 2024.

2.
Maedica (Bucur) ; 18(2): 348-351, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37588833

ABSTRACT

Introduction: Lesch-Nyhan syndrome (LNS) is a rare genetic disease secondary to a HPRT1 mutation on chromosome X. It is characterized by dystonia, developmental delay, hyperuricemia and self-harming behaviours. The HPRT enzyme is implicated in the purine salvage pathway. The deficiency of HPRT results in accumulation of uric acid. There have been some cases associated with epilepsy, but it still remains a rare occurrence in LNS patients. Case presentation: We describe the case of a 20-month-old male patient with a heterozygous HPRT1 mutation c11_17del.p (Arg4Leufs*4) associated with LNS. The child associated epileptic seizures mistaken by his parents as non-epileptic sleep events associated with apnea. Seizures were discovered secondary to a polygraphic long-time sleep video-electroencephalography (EEG) monitoring. The dystonic movements and epileptic seizures responded to Levetiracetam, but the management of the behavioural disorder remained a challenge. Conclusion:Lesch-Nyhan syndrome is a rare inherited metabolic disease and its pathogenesis is not fully known, which makes the treatment management very difficult. Despite the fact that epilepsy is uncommon in LNS children, it should always be considered as part of the differential diagnosis in movement disorders. Therefore, long-term video-EEG monitoring is recommended as well as a detailed patient history to identify possible clinical/subclinical epileptic seizures that require treatment.

3.
Children (Basel) ; 10(6)2023 May 28.
Article in English | MEDLINE | ID: mdl-37371191

ABSTRACT

Progress in the field of muscular dystrophy (MD) using a multidisciplinary approach based on international standards of care has led to a significant increase in the life expectancy of patients. The challenge of transitioning from pediatric to adult healthcare has been acknowledged for over a decade, yet it continues to be a last-minute concern. Currently, there is no established consensus on how to evaluate the effectiveness of the transition process. Our study aimed to identify how well patients are prepared for the transition and to determine their needs. We conducted a descriptive, cross-sectional study on 15 patients aged 14 to 21 years. The patients completed a sociodemographic and a Transition Readiness Assessment Questionnaire (TRAQ). We also analyzed the comorbidities of these patients. Our study revealed that only 46.7% of the patients had engaged in a conversation with a medical professional, namely, a child neurologist, about transitioning. A total of 60% of the participants expressed having confidence in their self-care ability. However, the median TRAQ score of 3.6 shows that these patients overestimate themselves. We emphasize the necessity for a slow, personalized transition led by a multidisciplinary team to ensure the continuity of state-of-the-art care from pediatric to adult healthcare services and the achievement of the highest possible quality of life for these patients.

4.
Children (Basel) ; 10(6)2023 Jun 03.
Article in English | MEDLINE | ID: mdl-37371242

ABSTRACT

Autosomal dominant hypocalcemia type 1 (ADH1) is a rare form of hypoparathyroidism that is characterized by gain-of-function mutations in the CASR gene, which provides instructions for producing the protein called calcium-sensing receptor (CaSR). Hypocalcemia in the neonatal period has a wide differential diagnosis. We present the case of a female newborn with genetic hypoparathyroidism (L125P mutation of CASR gene), hypocalcemia, and neonatal seizures due to the potential correlation between refractory neonatal seizures and ADH1. Neonatal seizures were previously described in patients with ADH1 but not in association with the L125P mutation of the CASR gene. Prompt diagnosis and management by a multidisciplinary and an appropriate therapeutic approach can prevent neurological and renal complications.

5.
Int J Mol Sci ; 24(9)2023 May 04.
Article in English | MEDLINE | ID: mdl-37175954

ABSTRACT

Multiple sclerosis (MS) represents a chronic immune-mediated neurodegenerative disease of the central nervous system that generally debuts around the age of 20-30 years. Still, in recent years, MS has been increasingly recognized among the pediatric population, being characterized by several peculiar features compared to adult-onset disease. Unfortunately, the etiology and disease mechanisms are poorly understood, rendering the already limited MS treatment options with uncertain efficacy and safety in pediatric patients. Thus, this review aims to shed some light on the progress in MS therapeutic strategies specifically addressed to children and adolescents. In this regard, the present paper briefly discusses the etiology, risk factors, comorbidities, and diagnosis possibilities for pediatric-onset MS (POMS), further moving to a detailed presentation of current treatment strategies, recent clinical trials, and emerging alternatives. Particularly, promising care solutions are indicated, including new treatment formulations, stem cell therapies, and cognitive training methods.


Subject(s)
Multiple Sclerosis , Neurodegenerative Diseases , Adolescent , Adult , Humans , Child , Young Adult , Multiple Sclerosis/therapy , Multiple Sclerosis/drug therapy , Neurodegenerative Diseases/diagnosis , Central Nervous System , Risk Factors , Diagnosis, Differential
6.
Article in English | MEDLINE | ID: mdl-36673871

ABSTRACT

Functional neurological disorder (FND) is a common issue in the pediatric population. The concept and our understanding of functional neurological disorders have changed over the past years, and new etiologic models and treatment plans have been explored. Knowledge about FND in the pediatric population, however, is lacking. The aim of this review is to provide an update on pediatric functional neurological disorder. We conducted a literature search of PubMed and SCOPUS databases and reviewed a total of 85 articles to gain insight into the current understanding of FND etiology, diagnosis, treatment, and prognosis in children and adolescents. Functional and high resolution MRI revealed abnormal connectivity and structural changes in patients with functional symptoms. The diagnostic criteria no longer require the presence of a psychological factor and instead focus on a rule-in diagnosis. Treatment of FND includes a clear communication of the diagnosis and the support of a multidisciplinary team. Although FND typically has a poor prognosis, better outcomes appear to have been achieved in children and young adults. We conclude that pediatric functional neurological disorder is a prevalent pathology and that this patient population has additional specific needs compared to the adult population.


Subject(s)
Conversion Disorder , Nervous System Diseases , Young Adult , Humans , Child , Adolescent , Nervous System Diseases/diagnosis , Nervous System Diseases/therapy , Conversion Disorder/diagnosis , Conversion Disorder/psychology , Conversion Disorder/therapy , Magnetic Resonance Imaging
7.
Genes (Basel) ; 13(7)2022 07 15.
Article in English | MEDLINE | ID: mdl-35886038

ABSTRACT

Early-onset developmental epileptic encephalopathy (DEE) refers to an age-specific, diverse group of epilepsy syndromes with electroclinical anomalies that are associated with severe cognitive, behavioral, and developmental impairments. Genetic DEEs have heterogeneous etiologies. This study includes 36 Romanian patients referred to the Regional Centre for Medical Genetics Dolj for genetic testing between 2017 and 2020. The patients had been admitted to and clinically evaluated at Doctor Victor Gomoiu Children's Hospital and Prof. Dr. Alexandru Obregia Psychiatry Hospital in Bucharest. Panel testing was performed using the Illumina® TruSight™ One "clinical exome" (4811 genes), and the analysis focused on the known genes reported in DEEs and clinical concordance. The overall diagnostic rate was 25% (9/36 cases). Seven cases were diagnosed with Dravet syndrome (likely pathogenic/pathogenic variants in SCN1A) and two with Genetic Epilepsy with Febrile Seizures Plus (SCN1B). For the diagnosed patients, seizure onset was <1 year, and the seizure type was generalized tonic-clonic. Four additional plausible variants of unknown significance in SCN2A, SCN9A, and SLC2A1 correlated with the reported phenotype. Overall, we are reporting seven novel variants. Comprehensive clinical phenotyping is crucial for variant interpretation. Genetic assessment of patients with severe early-onset DEE can be a powerful diagnostic tool for clinicians, with implications for the management and counseling of the patients and their families.


Subject(s)
Epileptic Syndromes , Seizures, Febrile , Epileptic Syndromes/genetics , Humans , Mutation , NAV1.1 Voltage-Gated Sodium Channel/genetics , NAV1.7 Voltage-Gated Sodium Channel/genetics , Phenotype , Romania/epidemiology , Seizures, Febrile/genetics
8.
Int J Mol Sci ; 23(11)2022 May 25.
Article in English | MEDLINE | ID: mdl-35682615

ABSTRACT

Oxidative stress has been linked with a variety of diseases, being involved in the debut and/or progress of several neurodegenerative disorders. This review intends to summarize some of the findings that correlate the overproduction of reactive oxygen species with the pathophysiology of Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. Oxidative stress was also noted to modify the inflammatory response. Even though oxidative stress and neuroinflammation are two totally different pathological events, they are linked and affect one another. Nonetheless, there are still several mechanisms that need to be understood regarding the onset and the progress of neurodegenerative diseases in order to develop efficient therapies. As antioxidants are a means to alter oxidative stress and slow down the symptoms of these neurodegenerative diseases, the most common antioxidants, enzymatic as well as non-enzymatic, have been mentioned in this paper as therapeutic options for the discussed disorders.


Subject(s)
Neurodegenerative Diseases , Antioxidants/therapeutic use , Humans , Neurodegenerative Diseases/pathology , Neuroinflammatory Diseases , Oxidative Stress/physiology , Reactive Oxygen Species
9.
Int J Mol Sci ; 23(11)2022 May 25.
Article in English | MEDLINE | ID: mdl-35682631

ABSTRACT

Neurotransmitters are molecules that amplify, transmit, and convert signals in cells, having an essential role in information transmission throughout the nervous system. Hundreds of such chemicals have been discovered in the last century, continuing to be identified and studied concerning their action on brain health. These substances have been observed to influence numerous functions, including emotions, thoughts, memories, learning, and movements. Thus, disturbances in neurotransmitters' homeostasis started being correlated with a plethora of neurological and neurodegenerative disorders. In this respect, the present paper aims to describe the most important neurotransmitters, broadly classified into canonical (e.g., amino acids, monoamines, acetylcholine, purines, soluble gases, neuropeptides) and noncanonical neurotransmitters (e.g., exosomes, steroids, D-aspartic acid), and explain their link with some of the most relevant neurological conditions. Moreover, a brief overview of the recently developed neurotransmitters' detection methods is offered, followed by several considerations on the modulation of these substances towards restoring homeostasis.


Subject(s)
Neurodegenerative Diseases , Neuropeptides , Brain/metabolism , Central Nervous System/metabolism , Humans , Neurodegenerative Diseases/metabolism , Neuropeptides/metabolism , Neurotransmitter Agents/metabolism
10.
Neurol Int ; 13(2): 184-189, 2021 Apr 29.
Article in English | MEDLINE | ID: mdl-33946630

ABSTRACT

Glutamate, the major excitatory neurotransmitter, plays a ubiquitous role in most aspects of normal brain functioning. Its indispensable position is paradoxically doubled by a high excitotoxic potential following disruption of its dynamic equilibrium. Several lines of evidence have suggested the involvement of the glutamatergic N-methyl-D-aspartate receptor (NMDAR) in learning, memory formation, and human cognition. Furthermore, NMDARs play a pivotal role in various neuropsychiatric disorders, recently being identified as an important locus for disease-associated genomic variation. The GRIN2A gene encodes the NMDAR's GluN2A subunit. Genetic alterations of GRIN2A result in phenotypic pleiotropy, predisposing to a broad range of epilepsy syndromes, with an elusive and unpredictable evolution and response to treatment. The archetypal GRIN2A-related phenotype comprises the idiopathic focal epilepsies (IFEs), with a higher incidence of GRIN2A mutants among entities at the more severe end of the spectrum. We report the case of a patient heterozygous for GRIN2A, c.1081C>T, presenting with febrile convulsions and later superimposed atonic seizures, expressive language delay, and macrocephaly. As the number of reported GRIN2A variants is continuously increasing, the phenotypic boundaries gradually grow faint. Therefore, it is fundamental to maintain an acute critical awareness of the possible genetic etiology of different epilepsy syndromes. So far, therapeutic strategies rely on empirical observations relating genotypes to specific drugs, but the overall success of treatment remains unpredictable. Deciphering the functional consequences of individual GRIN2A variants could lead to the development of precision therapeutic approaches for patients carrying NMDAR mutations.

SELECTION OF CITATIONS
SEARCH DETAIL