Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 13(7)2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38611550

ABSTRACT

Changes in land-use practices have been a central element of human adaptation to Holocene climate change. Many practices that result in the short-term stabilization of socio-natural systems, however, have longer-term, unanticipated consequences that present cascading challenges for human subsistence strategies and opportunities for subsequent adaptations. Investigating complex sequences of interaction between climate change and human land-use in the past-rather than short-term causes and effects-is therefore essential for understanding processes of adaptation and change, but this approach has been stymied by a lack of suitably-scaled paleoecological data. Through a high-resolution paleoecological analysis, we provide a 7000-year history of changing climate and land management around Lake Acopia in the Andes of southern Peru. We identify evidence of the onset of pastoralism, maize cultivation, and possibly cultivation of quinoa and potatoes to form a complex agrarian landscape by c. 4300 years ago. Cumulative interactive climate-cultivation effects resulting in erosion ended abruptly c. 2300 years ago. After this time, reduced sedimentation rates are attributed to the construction and use of agricultural terraces within the catchment of the lake. These results provide new insights into the role of humans in the manufacture of Andean landscapes and the incremental, adaptive processes through which land-use practices take shape.

2.
Ecology ; 97(10): 2533-2539, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27859121

ABSTRACT

Controversy exists over the cause and timing of the extinction of the Pleistocene megafauna. In the tropical Andes, deglaciation and associated rapid climate change began ~8,000 years before human arrival, providing an opportunity to separate the effects of climate change from human hunting on megafaunal extinction. We present a paleoecological record spanning the last 25,000 years from Lake Pacucha, Peru (3,100 m elevation). Fossil pollen, charcoal, diatoms, and the dung fungus Sporormiella, chronicle a two-stage megaherbivore population collapse. Sporormiella abundance, the proxy for megafaunal presence, fell sharply at ~21,000 years ago, but rebounded prior to a permanent decline between ~16,800 and 15,800 years ago. This two-stage decline in megaherbivores resulted in a functional extinction by ~15,800 years ago, 3,000 years earlier than known human occupation of the high Andes. Declining megaherbivore populations coincided with warm, wet intervals. Climatic instability and megafaunal population collapse triggered an ecological cascade that resulted in novel floral assemblages, and increases in woody species, fire frequency, and plant species that were sensitive to trampling. Our data revealed that Andean megafaunal populations collapsed due to positive feedbacks between habitat quality and climate change rather than human activity.


Subject(s)
Climate Change , Extinction, Biological , Fossils , Vertebrates , Animals , Ecosystem , Humans , Peru
SELECTION OF CITATIONS
SEARCH DETAIL
...