Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Mol Sci ; 22(24)2021 Dec 13.
Article in English | MEDLINE | ID: mdl-34948170

ABSTRACT

The high photodynamic effect of the Newman strain of the S. aureus and of clinical strains of S. aureus MRSA 12673 and E. coli 12519 are observed for new cationic light-activated phenosafranin polyhedral oligomeric silsesquioxane (POSS) conjugates in vitro. Killing of bacteria was achieved at low concentrations of silsesquioxanes (0.38 µM) after light irradiation (λem. max = 522 nm, 10.6 mW/cm2) for 5 min. Water-soluble POSS-photosensitizers are synthesized by chemically coupling a phenosafranin dye (PSF) (3,7-diamino-5-phenylphenazine chloride) to an inorganic silsesquioxane cage activated by attachment of succinic anhydride rings. The chemical structure of conjugates is confirmed by 1H, 13C NMR, HRMS, IR, fluorescence spectroscopy and UV-VIS analyzes. The APDI and daunorubicin (DAU) synergy is investigated for POSSPSFDAU conjugates. Confocal microscopy experiments indicate a site of intracellular accumulation of the POSSPSF, whereas iBuPOSSPSF and POSSPSFDAU accumulate in the cell wall or cell membrane. Results from the TEM study show ruptured S. aureus cells with leaking cytosolic mass and distorted cells of E. coli. Bacterial cells are eradicated by ROS produced upon irradiation of the covalent conjugates that can kill the bacteria by destruction of cellular membranes, intracellular proteins and DNA through the oxidative damage of bacteria.


Subject(s)
Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Phenazines/pharmacology , Anti-Bacterial Agents/pharmacology , Bacteria/metabolism , Cations/metabolism , Cell Membrane/metabolism , Escherichia coli/drug effects , Phenazines/metabolism , Photochemotherapy/methods , Photosensitizing Agents/metabolism , Photosensitizing Agents/pharmacology , Porphyrins/chemistry , Reactive Oxygen Species/metabolism , Staphylococcus aureus/drug effects
2.
Materials (Basel) ; 14(17)2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34501067

ABSTRACT

The results of the application of a new hydrophobization agent based on a triethoxymethylsilane and standard starch aqueous mixture for mass-produced cellulosic materials-printing paper, paperboard, and sack paper-have been evaluated to examine whether such a mixture can be used in industrial practice. The application of this agent on laboratory sheets prepared in a repetitive recycling process was performed to investigate its influence on the formation and properties of the products, as well as the contamination of circulating water. Measurements of the water contact angle, Cobb tests, and water penetration dynamics (PDA) were performed to test the barrier properties of the resulting materials. The effects of the applied coatings and recycling process on the paper's tensile strength, tear index, roughness, air permeance, and ISO brightness were studied. Studies have proven that this formulation imparts relatively high surface hydrophobicity to all materials tested (contact angles above 100°) and a significant improvement in barrier properties while maintaining good mechanical and optical performance. The agent also does not interfere with the pulping and re-forming processes during recycling and increases circulation water contamination to an acceptable degree. Attenuated total reflectance Fourier-transform infrared (FT-IR) spectra of the paper samples revealed the presence of a polysiloxane network on the surface.

3.
Materials (Basel) ; 8(7): 4400-4420, 2015 Jul 17.
Article in English | MEDLINE | ID: mdl-28793447

ABSTRACT

Novel octakis-2[(6-hydroxyhexyl)thio]ethyl-octasilsesquioxane (POSS-S-OH) as well as heptaisobutyl-2[(6-hydroxyhexyl)thio]ethyl-octasilsesquioxane (iBu-POSS-S-OH) were synthesized. POSS structures, bearing both types of groups i.e., 2[(6-hydroxyhexyl)thio]ethyl and the vinyl ones, pendant from the octahedral cage are also described. The synthetic pathway involved thiol-ene click reaction of 6-mercapto-1-hexanol (MCH) to octavinyloctasilsesquioxane (POSS-Vi), and heptaisobutylvinyloctasilsesquioxane (iBu-POSS-Vi), in the presence of 2,2'-azobisisobutyronitrile. The functionalized silsesquioxane cages of regular octahedral structure were used further as initiators for ring opening polymerization of L,L-dilactide, catalyzed by tin (II) 2-ethylhexanoate. The polymerization afforded biodegradable hybrid star shape and linear systems with an octasilsesquioxane cage as a core, bearing polylactide arm(s).

4.
Nanotoxicology ; 7(3): 235-50, 2013 May.
Article in English | MEDLINE | ID: mdl-22264124

ABSTRACT

Silica nanoparticles have an interesting potential in drug delivery, gene therapy and molecular imaging due to the possibility of tailoring their surface reactivity that can be obtained by surface modification. Despite these potential benefits, there is concern that exposure of humans to certain types of silica nanomaterials may lead to significant adverse health effects. The motivation of this study was to determine the kinetics of cellular binding/uptake of the vinyl- and the aminopropyl/vinyl-modified silica nanoparticles into peripheral blood lymphocytes in vitro, to explore their genotoxic and cytotoxic properties and to compare the biological properties of modified silica nanoparticles with those of the unmodified ones. Size of nanoparticles determined by SEM varied from 10 to 50 nm. The average hydrodynamic diameter and zeta potential also varied from 176.7 nm (+18.16 mV) [aminopropyl/vinyl-modified] and 235.4 nm (-9.49 mV) [vinyl-modified] to 266.3 (-13.32 mV) [unmodified]. Surface-modified silica particles were internalized by lymphocytes with varying efficiency and expressed no cytotoxic nor genotoxic effects, as determined by various methods (cell viability, apoptosis/necrosis, oxidative DNA damage, chromosome aberrations). However, they affected the proliferation of the lymphocytes as indicated by a decrease in mitotic index value and cell cycle progression. In contrast, unmodified silica nanoparticles exhibited cytotoxic and genotoxic properties at high doses as well as interfered with cell cycle.


Subject(s)
Drug Carriers/chemistry , Leukocytes, Mononuclear/metabolism , Nanoparticles/chemistry , Nanoparticles/toxicity , Silicon Dioxide/chemistry , Silicon Dioxide/toxicity , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Survival/drug effects , Chromosome Aberrations/drug effects , DNA Damage/drug effects , Drug Carriers/pharmacokinetics , Drug Carriers/pharmacology , Drug Carriers/toxicity , Endotoxins/analysis , Flow Cytometry , Humans , Leukocytes, Mononuclear/chemistry , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/drug effects , Mitotic Index , Necrosis , Particle Size , Silicon Dioxide/blood , Silicon Dioxide/pharmacology , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL