Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(9)2024 May 05.
Article in English | MEDLINE | ID: mdl-38732248

ABSTRACT

The role of afferent target interactions in dendritic plasticity within the adult brain remains poorly understood. There is a paucity of data regarding the effects of deafferentation and subsequent dendritic recovery in adult brain structures. Moreover, although adult zebrafish demonstrate ongoing growth, investigations into the impact of growth on mitral cell (MC) dendritic arbor structure and complexity are lacking. Leveraging the regenerative capabilities of the zebrafish olfactory system, we conducted a comprehensive study to address these gaps. Employing an eight-week reversible deafferentation injury model followed by retrograde labeling, we observed substantial morphological alterations in MC dendrites. Our hypothesis posited that cessation of injury would facilitate recovery of MC dendritic arbor structure and complexity, potentially influenced by growth dynamics. Statistical analyses revealed significant changes in MC dendritic morphology following growth and recovery periods, indicating that MC total dendritic branch length retained significance after 8 weeks of deafferentation injury when normalized to individual fish physical characteristics. This suggests that regeneration of branch length could potentially function relatively independently of growth-related changes. These findings underscore the remarkable plasticity of adult dendritic arbor structures in a sophisticated model organism and highlight the efficacy of zebrafish as a vital implement for studying neuroregenerative processes.


Subject(s)
Dendrites , Olfactory Bulb , Zebrafish , Animals , Neuronal Plasticity
2.
Dev Neurosci ; 36(3-4): 250-60, 2014.
Article in English | MEDLINE | ID: mdl-24943326

ABSTRACT

Stressful early life experiences are implicated in lifelong health. However, little is known about the consequences of emotional stress (ES) or physical stress (PS) on neurobiology. Therefore, the following set of experiments was designed to assess changes in transcription and translation of key proteins within the nucleus accumbens (NAc). Male adolescent (postnatal day 35) or adult (8-week-old) mice were exposed to ES or PS using a witness social defeat paradigm. Then, 24 h after the last stress session, we measured levels of specific mRNAs and proteins within the NAc. Spine density was also assessed in separate groups of mice. Exposure to ES or PS disrupted extracellular signal-related kinase 2 (ERK2), reduced transcription of ΔFosB and had no effect on cAMP response element-binding protein (CREB) mRNA. Western blots revealed that exposure to ES or PS decreased ERK2 phosphorylation in adolescents, whereas the same stress regimen increased ERK2 phosphorylation in adults. Exposure to ES or PS had no effect on ΔFosB or CREB phosphorylation. ES and PS increased spine density in the NAc of adolescent exposed mice, but only exposure to PS increased spine density in adults. Together, these findings demonstrate that exposure to ES or PS is a potent stressor in adolescent and adult mice and can disturb the integrity of the NAc by altering transcription and translation of important signaling molecules in an age-dependent manner. Furthermore, exposure to ES and PS induces substantial synaptic plasticity of the NAc.


Subject(s)
Dendritic Spines/physiology , Gene Expression/physiology , Nucleus Accumbens/growth & development , Nucleus Accumbens/metabolism , Stress, Physiological/physiology , Stress, Psychological/psychology , Aging/physiology , Aging/psychology , Animals , Interpersonal Relations , Male , Mice , Mice, Inbred C57BL , Neuronal Plasticity/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...