Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(16)2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37629106

ABSTRACT

The plant-specific RWP-RK transcription factor family plays a central role in the regulation of nitrogen response and gametophyte development. However, little information is available regarding the evolutionary relationships and characteristics of the RWP-RK family genes in cassava, an important tropical crop. Herein, 13 RWP-RK proteins identified in cassava were unevenly distributed across 9 of the 18 chromosomes (Chr), and these proteins were divided into two clusters based on their phylogenetic distance. The NLP subfamily contained seven cassava proteins including GAF, RWP-RK, and PB1 domains; the RKD subfamily contained six cassava proteins including the RWP-RK domain. Genes of the NLP subfamily had a longer sequence and more introns than the RKD subfamily. A large number of hormone- and stress-related cis-acting elements were found in the analysis of RWP-RK promoters. Real-time quantitative PCR revealed that all MeNLP1-7 and MeRKD1/3/5 genes responded to different abiotic stressors (water deficit, cold temperature, mannitol, polyethylene glycol, NaCl, and H2O2), hormonal treatments (abscisic acid and methyl jasmonate), and nitrogen starvation. MeNLP3/4/5/6/7 and MeRKD3/5, which can quickly and efficiently respond to different stresses, were found to be important candidate genes for further functional assays in cassava. The MeRKD5 and MeNLP6 proteins were localized to the cell nucleus in tobacco leaf. Five and one candidate proteins interacting with MeRKD5 and MeNLP6, respectively, were screened from the cassava nitrogen starvation library, including agamous-like mads-box protein AGL14, metallothionein 2, Zine finger FYVE domain containing protein, glyceraldehyde-3-phosphate dehydrogenase, E3 Ubiquitin-protein ligase HUWE1, and PPR repeat family protein. These results provided a solid basis to understand abiotic stress responses and signal transduction mediated by RWP-RK genes in cassava.


Subject(s)
Manihot , Manihot/genetics , Hydrogen Peroxide , Phylogeny , Vegetables , Gene Library
2.
Plant J ; 116(3): 744-755, 2023 11.
Article in English | MEDLINE | ID: mdl-37522642

ABSTRACT

Plant cells employ intricate defense mechanisms, including mRNA decay pathways, to counter viral infections. Among the RNA quality control (RQC) mechanisms, nonsense-mediated decay (NMD), no-go decay (NGD), and nonstop decay (NSD) pathways play critical roles in recognizing and cleaving aberrant mRNA molecules. Turnip crinkle virus (TCV) is a plant virus that triggers mRNA decay pathways, but it has also evolved strategies to evade this antiviral defense. In this study, we investigated the activation of mRNA decay during TCV infection and its impact on TCV RNA accumulation. We found that TCV infection induced the upregulation of essential mRNA decay factors, indicating their involvement in antiviral defense and the capsid protein (CP) of TCV, a well-characterized viral suppressor of RNA silencing (VSR), also compromised the mRNA decay-based antiviral defense by targeting AtXRN4. This interference with mRNA decay was supported by the observation that TCV CP stabilized a reporter transcript with a long 3' untranslated region (UTR). Moreover, TCV CP suppressed the decay of known NMD target transcripts, further emphasizing its ability to modulate host RNA control mechanisms. Importantly, TCV CP physically interacted with AtXRN4, providing insight into the mechanism of viral interference with mRNA decay. Overall, our findings reveal an alternative strategy employed by TCV, wherein the viral coat protein suppresses the mRNA decay pathway to facilitate viral infection.


Subject(s)
Arabidopsis , Carmovirus , Arabidopsis/genetics , RNA Interference , Carmovirus/genetics , Nonsense Mediated mRNA Decay/genetics , RNA , Antiviral Agents , RNA, Viral/genetics
3.
Plant Mol Biol ; 112(6): 293-307, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37507516

ABSTRACT

Long noncoding RNAs (lncRNAs) participate in plant biological processes under biotic and abiotic stresses. However, little is known about the function and regulation mechanism of lncRNAs related to the pathogen at a molecular level. A banana lncRNA, Malnc2310, is a Fusarium oxysporum f. sp. cubense inducible lncRNA in roots. In this study, we demonstrate the nuclear localization of Malnc2310 by fluorescence in situ hybridization and it can bind to several proteins that are related to flavonoid pathway, pathogen response and programmed cell death. Overexpression of Malnc2310 increases susceptibility to Fusarium crude extract (Fu), salinity, and cold in transgenic Arabidopsis. In addition, Malnc2310 transgenic Arabidopsis accumulated more anthocyanins under Fusarium crude extract and cold treatments that are related to upregulation of these genes involved in anthocyanin biosynthesis. Based on our findings, we propose that Malnc2310 may participate in flavonoid metabolism in plants under stress. Furthermore, phenylalanine ammonia lyase (PAL) protein expression was enhanced in Malnc2310 overexpressed transgenic Arabidopsis, and Malnc2310 may participate in PAL regulation by binding to it. This study provides new insights into the role of Malnc2310 in mediating plant stress adaptation.


Subject(s)
Arabidopsis , Fusarium , Musa , RNA, Long Noncoding , RNA, Long Noncoding/genetics , Fusarium/physiology , Musa/genetics , Arabidopsis/genetics , Anthocyanins , In Situ Hybridization, Fluorescence , Plant Diseases/genetics , Complex Mixtures
4.
Plant Physiol Biochem ; 194: 122-133, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36399913

ABSTRACT

AtNPF4.5/AIT2, which was predicted to be a low-affinity transporter capable for nitrate uptake, was screened by ABA receptor complex in Arabidopsis ten years ago. However, the molecular and biochemical characterizations of AtNPF4.5 in plants remained largely unclear. In this study, the function of a plasma-membrane-localized and root-specifically-expressed gene MeNPF4.5 (Manihot-esculenta NITRATE TRANSPORTER 1 PTR FAMILY4.5), an ortholog of the Arabidopsis thaliana NPF4.5, was investigated in cassava roots as a nitrate efflux transporter on low nitrate medium and an influx transporter following exposure to high concentration of external nitrates. Moreover, RNA interference (RNAi) of MeNPF4.5 reduced the nitrate efflux capacity but the overexpressing cassava seedlings increased the ability of efflux from the elongation to the mature zone of root under low nitrate treatments. Besides, MeNPF4.5-RNAi expression reduced the nitrate influx capacity but enhanced nitrate absorption in parts of overexpressing plants from the meristem, elongation to mature zone of roots under high nitrate conditions. Furthermore, MeNPF4.5-RNAi seedlings survived owing to roots that could grow normally, but the MeNPF4.5-over-expressors showed adverse growth under 7% PEG6000 stress, suggesting that MeNPF4.5 negatively regulated the osmotic stress and was involved in nitrate flux through cassava seedlings.


Subject(s)
Manihot , Nitrate Transporters , Nitrates/metabolism , Manihot/genetics , Manihot/metabolism , Seedlings/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Osmotic Pressure , Plant Roots/metabolism
5.
Plant Biotechnol J ; 20(12): 2389-2405, 2022 12.
Article in English | MEDLINE | ID: mdl-36053917

ABSTRACT

Glutaredoxins (GRXs) are essential for reactive oxygen species (ROS) homeostasis in responses of plants to environment changes. We previously identified several drought-responsive CC-type GRXs in cassava, an important tropical crop. However, how CC-type GRX regulates ROS homeostasis of cassava under drought stress remained largely unknown. Here, we report that a drought-responsive CC-type GRX, namely MeGRXC3, was associated with activity of catalase in the leaves of 100 cultivars (or unique unnamed genotypes) of cassava under drought stress. MeGRXC3 negatively regulated drought tolerance by modulating drought- and abscisic acid-induced stomatal closure in transgenic cassava. It antagonistically regulated hydrogen peroxide (H2 O2 ) accumulation in epidermal cells and guard cells. Moreover, MeGRXC3 interacted with two catalases of cassava, MeCAT1 and MeCAT2, and regulated their activity in vivo. Additionally, MeGRXC3 interacts with a cassava TGA transcription factor, MeTGA2, in the nucleus, and regulates the expression of MeCAT7 through a MeTGA2-MeMYB63 pathway. Overall, we demonstrated the roles of MeGRXC3 in regulating activity of catalase at both transcriptional and post-translational levels, therefore involving in ROS homeostasis and stomatal movement in responses of cassava to drought stress. Our study provides the first insights into how MeGRXC3 may be used in molecular breeding of cassava crops.


Subject(s)
Manihot , Manihot/genetics , Glutaredoxins , Catalase , Droughts , Reactive Oxygen Species , Vegetables
6.
BMC Plant Biol ; 22(1): 41, 2022 Jan 20.
Article in English | MEDLINE | ID: mdl-35057736

ABSTRACT

BACKGROUND: We previously identified six drought-inducible CC-type glutaredoxins in cassava cultivars, however, less is known about their potential role in the molecular mechanism by which cassava adapted to abiotic stress. RESULTS: Herein, we investigate one of cassava drought-responsive CC-type glutaredoxins, namely MeGRXC3, that involved in regulation of mannitol-induced inhibition on seed germination and seedling growth in transgenic Arabidopsis. MeGRXC3 overexpression up-regulates several stress-related transcription factor genes, such as PDF1.2, ERF6, ORA59, DREB2A, WRKY40, and WRKY53 in Arabidopsis. Protein interaction assays show that MeGRXC3 interacts with Arabidopsis TGA2 and TGA5 in the nucleus. Eliminated nuclear localization of MeGRXC3 failed to result mannitol-induced inhibition of seed germination and seedling growth in transgenic Arabidopsis. Mutation analysis of MeGRXC3 indicates the importance of conserved motifs for its transactivation activity in yeast. Additionally, these motifs are also indispensable for its functionality in regulating mannitol-induced inhibition of seed germination and enhancement of the stress-related transcription factors in transgenic Arabidopsis. CONCLUSIONS: MeGRXC3 overexpression confers mannitol sensitivity in transgenic Arabidopsis possibly through interaction with TGA2/5 in the nucleus, and nuclear activity of MeGRXC3 is required for its function.


Subject(s)
Glutaredoxins/genetics , Manihot/genetics , Osmotic Pressure/physiology , Plant Proteins/genetics , Amino Acid Motifs , Arabidopsis , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Cell Nucleus/genetics , Cell Nucleus/metabolism , Droughts , Gene Expression Regulation, Plant , Germination/drug effects , Glutaredoxins/metabolism , Mannitol/pharmacology , Osmotic Pressure/drug effects , Plant Proteins/metabolism , Plants, Genetically Modified , Seedlings/genetics , Seedlings/growth & development , Seeds/drug effects , Seeds/genetics , Seeds/growth & development , Two-Hybrid System Techniques
7.
Front Plant Sci ; 13: 1101821, 2022.
Article in English | MEDLINE | ID: mdl-36860206

ABSTRACT

The reactive oxygen species (ROS) signal regulates stress-induced leaf abscission in cassava. The relationship between the function of the cassava transcription factor bHLH gene and low temperature-induced leaf abscission is still unclear. Here, we report that MebHLH18, a transcription factor, involved in regulating low temperature-induced leaf abscission in cassava. The expression of the MebHLH18 gene was significantly related to low temperature-induced leaf abscission and POD level. Under low temperatures, the levels of ROS scavengers in different cassava genotypes were significantly different in the low temperature-induced leaf abscission process. Cassava gene transformation showed that MebHLH18 overexpression significantly decreased the low temperature-induced leaf abscission rate. Simultaneously, interference expression increased the rate of leaf abscission under the same conditions. ROS analysis showed a connection between the decrease in the low temperature-induced leaf abscission rate caused by MebHLH18 expression and the increase in antioxidant activity. A Genome-wide association studies analysis showed a relationship between the natural variation of the promoter region of MebHLH18 and low temperature-induced leaf abscission. Furthermore, studies showed that the change in MebHLH18 expression was caused by a single nucleotide polymorphism variation in the promoter region upstream of the gene. The high expression of MebHLH18 led to a significant increase in POD activity. The increased POD activity decreased the accumulation of ROS at low temperatures and the rate of leaf abscission. It indicates that the natural variation in the promoter region of MebHLH18 increases antioxidant levels under low temperatures and slows down low temperature-induced leaf abscission.

8.
BMC Plant Biol ; 18(1): 329, 2018 Dec 04.
Article in English | MEDLINE | ID: mdl-30514219

ABSTRACT

BACKGROUND: CC-type glutaredoxins (GRXs) are plant-specific glutaredoxin, play regulatory roles in response of biotic and abiotic stress. However, it is not clear whether the CC-type GRXs are involve in drought response in cassava (Manihot esculenta), an important tropical tuber root crop. RESULTS: Herein, genome-wide analysis identified 18 CC-type GRXs in the cassava genome, of which six (namely MeGRXC3, C4, C7, C14, C15, and C18) were induced by drought stress in leaves of two cassava cultivars Argentina 7 (Arg7) and South China 124 (SC124). Exogenous abscisic acid (ABA) application induced the expression of all the six CC-type GRXs in leaves of both Arg7 and SC124 plants. Overexpression of MeGRXC15 in Arabidopsis (Col-0) increases tolerance of ABA on the sealed agar plates, but results in drought hypersensitivity in soil-grown plants. The results of microarray assays show that MeGRXC15 overexpression affected the expression of a set of transcription factors which involve in stress response, ABA, and JA/ET signalling pathway. The results of protein interaction analysis show that MeGRXC15 can interact with TGA5 from Arabidopsis and MeTGA074 from cassava. CONCLUSIONS: CC-type glutaredoxins play regulatory roles in cassava response to drought possibly through ABA signalling pathway.


Subject(s)
Abscisic Acid/metabolism , Glutaredoxins/metabolism , Manihot/metabolism , Plant Growth Regulators/metabolism , Plant Proteins/metabolism , Arabidopsis/genetics , Dehydration/metabolism , Genome, Plant/genetics , Genome-Wide Association Study , Glutaredoxins/genetics , Glutaredoxins/physiology , Manihot/genetics , Manihot/physiology , Phylogeny , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/physiology , Sequence Alignment , Signal Transduction/genetics
9.
Sci Rep ; 7(1): 16861, 2017 12 04.
Article in English | MEDLINE | ID: mdl-29203778

ABSTRACT

Red kiwifruit (Actinidia chinensis) is a popular fresh fruit with a high market value due to its unique color, caused by anthocyanin accumulation. The R2R3-MYB transcription factors (TFs) have important roles in plant development and anthocyanin metabolism. In this first comprehensive study of R2R3-MYBs in kiwifruit, a total of 93 R2R3-MYB genes, including five novel previously unannotated AcMYBs, were identified. Their phylogenic relationship, exon-intron structures, and conserved motifs were analyzed. Based on transcriptome data, 60 AcMYBs were expressed (FPKM > 1) across seven developmental stages of kiwifruit, revealing five expression patterns. One of the 5 newly identified R2R3 TFs, AcMYB75, showed an anthocyanin accumulation-linked expression pattern during fruit development. AcMYB75 localized to the nucleus and has an active transactivation domain, verifying it as a transcription factor. AcMYB75 protein specifically bound the promoter of the anthocyanin biosynthesis gene ANS in yeast one-hybrid system and in vivo. In 35 S:AcMYB75 Arabidopsis plants, anthocyanin significantly accumulated in leaves, and the expression of anthocyanin biosynthetic genes was greatly up-regulated. Together, these results suggest that AcMYB75 is involved in anthocyanin biosynthesis in kiwifruit. These findings will increase our understanding of AcMYBs involved in anthocyanin biosynthesis, and also benefit further functional characterization of R2R3-MYB genes in kiwifruit.


Subject(s)
Actinidia/metabolism , Anthocyanins/biosynthesis , Plant Proteins/metabolism , Transcription Factors/metabolism , Actinidia/genetics , Amino Acid Sequence , Arabidopsis/genetics , Arabidopsis/metabolism , DNA/chemistry , DNA/metabolism , Fruit/metabolism , Phylogeny , Plant Leaves/metabolism , Plant Proteins/classification , Plant Proteins/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Sequence Alignment , Nicotiana/genetics , Nicotiana/metabolism , Transcription Factors/classification , Transcription Factors/genetics , Transcriptional Activation , Transcriptome
10.
Front Plant Sci ; 8: 1259, 2017.
Article in English | MEDLINE | ID: mdl-28769962

ABSTRACT

Abiotic stress negatively impacts cassava (Manihot esculenta) growth and yield. Several molecular mechanisms of plant response to cold and drought have been identified and described in the literature, however, little is known about the crosstalk of the responses of cassava to these two stresses. To elucidate this question, transcriptome analysis of cassava seedlings under cold or PEG-simulated drought stress treatment was performed. Our results showed that 6103 and 7462 transcripts were significantly regulated by cold and drought stress, respectively. Gene Ontology annotation revealed that the abscisic and jasmonic acid signaling pathways shared between the two stresses responses. We further identified 2434 common differentially expressed genes (DEGs), including 1130 up-regulated and 841 down-regulated DEGs by the two stresses. These co-induced or co-suppressed genes are grouped as stress signal perception and transduction, transcription factors (TFs), metabolism as well as transport facilitation according to the function annotation. Furthermore, a large proportion of well characterized protein kinases, TF families and ubiquitin proteasome system related genes, such as RLKs, MAPKs, AP2/ERFBPs, WRKYs, MYBs, E2 enzymes and E3 ligases, including three complexes of interacting proteins were shown as key points of crosstalk between cold and drought stress signaling transduction pathways in a hierarchical manner. Our research provides valuable information and new insights for genetically improving the tolerance of crops to multiple abiotic stresses.

11.
J Exp Bot ; 68(13): 3657-3672, 2017 06 15.
Article in English | MEDLINE | ID: mdl-28637218

ABSTRACT

The myeloblastosis (MYB) transcription factor superfamily is the largest transcription factor family in plants, playing different roles during stress response. However, abiotic stress-responsive MYB transcription factors have not been systematically studied in cassava (Manihot esculenta), an important tropical tuber root crop. In this study, we used a genome-wide transcriptome analysis to predict 299 putative MeMYB genes in the cassava genome. Under drought and cold stresses, many MeMYB genes exhibited different expression patterns in cassava leaves, indicating that these genes might play a role in abiotic stress responses. We found that several stress-responsive MeMYB genes responded to abscisic acid (ABA) in cassava leaves. We characterize four MeMYBs, namely MeMYB1, MeMYB2, MeMYB4, and MeMYB9, as R2R3-MYB transcription factors. Furthermore, RNAi-driven repression of MeMYB2 resulted in drought and cold tolerance in transgenic cassava. Gene expression assays in wild-type and MeMYB2-RNAi cassava plants revealed that MeMYB2 may affect other MeMYBs as well as MeWRKYs under drought and cold stress, suggesting crosstalk between MYB and WRKY family genes under stress conditions in cassava.


Subject(s)
Gene Expression Regulation, Plant , Genome, Plant , Manihot/genetics , Plant Proteins/genetics , Transcription Factors/genetics , Computational Biology , Gene Expression Profiling , Plant Leaves/metabolism , Plant Proteins/metabolism , Plant Roots/metabolism , Transcription Factors/metabolism
12.
PLoS One ; 12(5): e0177456, 2017.
Article in English | MEDLINE | ID: mdl-28493955

ABSTRACT

Cassava is the third largest food crop of the world and has strong ability of drought tolerance. In order to evaluate the molecular diversity and to discover novel alleles for drought tolerance in cassava germplasms, we examined a total of 107 abiotic stress related expressed sequence tags-simple sequence repeat (EST-SSR) markers in 134 cassava genotypes coming from planting regions worldwide and performed drought related marker-traits association mapping. As results, we successfully amplified 98 of 107 markers in 97 polymorphic loci and 279 alleles, with 2.87 alleles per locus, gene diversity of 0.48 and polymorphic information content (PIC) of 0.41 on average. The genetic coefficient between every two lines was 0.37 on average, ranging from 0.21 to 0.82. According to our population structure analysis, these samples could be divided into three sub-populations showing obvious gene flow between them. We also performed water stress experiments using 100-day old cassava plants in two years and calculated the drought tolerance coefficients (DTCs) and used them as phenotypes for marker-trait association mapping. We found that 53 markers were significantly associated with these drought-related traits, with a contribution rate for trait variation of 8.60% on average, ranging between 2.66 and 28.09%. Twenty-four of these 53 associated genes showed differential transcription or protein levels which were confirmed by qRT-PCR under drought stress when compared to the control conditions in cassava. Twelve of twenty-four genes were the same differential expression patterns in omics data and results of qRT-PCR. Out of 33 marker-traits combinations on 24 loci, 34 were positive and 53 negative alleles according to their phenotypic effects and we also obtained the typical materials which carried these elite alleles. We also found 23 positive average allele effects while 10 loci were negative according to their allele effects (AAEs). Our results on molecular diversity, locus association and differential expression under drought can prove beneficial to select excellent materials through marker assisted selection and for functional genes research in the future.


Subject(s)
Droughts , Expressed Sequence Tags , Microsatellite Repeats/genetics , Alleles , Biomarkers , Chromosome Mapping , Genetic Variation/genetics , Genotype , Manihot/chemistry , Phenotype , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci/genetics
13.
Nat Commun ; 5: 5110, 2014 Oct 10.
Article in English | MEDLINE | ID: mdl-25300236

ABSTRACT

Cassava is a major tropical food crop in the Euphorbiaceae family that has high carbohydrate production potential and adaptability to diverse environments. Here we present the draft genome sequences of a wild ancestor and a domesticated variety of cassava and comparative analyses with a partial inbred line. We identify 1,584 and 1,678 gene models specific to the wild and domesticated varieties, respectively, and discover high heterozygosity and millions of single-nucleotide variations. Our analyses reveal that genes involved in photosynthesis, starch accumulation and abiotic stresses have been positively selected, whereas those involved in cell wall biosynthesis and secondary metabolism, including cyanogenic glucoside formation, have been negatively selected in the cultivated varieties, reflecting the result of natural selection and domestication. Differences in microRNA genes and retrotransposon regulation could partly explain an increased carbon flux towards starch accumulation and reduced cyanogenic glucoside accumulation in domesticated cassava. These results may contribute to genetic improvement of cassava through better understanding of its biology.


Subject(s)
Evolution, Molecular , Genome, Plant , Manihot/genetics , Genetic Variation , Manihot/classification , Manihot/metabolism , Molecular Sequence Data , Photosynthesis , Phylogeny , Plant Proteins/genetics , Selection, Genetic , Starch/metabolism
14.
PLoS One ; 8(11): e80218, 2013.
Article in English | MEDLINE | ID: mdl-24224045

ABSTRACT

Abiotic stress is a major environmental factor that limits cotton growth and yield, moreover, this problem has become more and more serious recently, as multiple stresses often occur simultaneously due to the global climate change and environmental pollution. In this study, we sought to identify genes involved in diverse stresses including abscisic acid (ABA), cold, drought, salinity and alkalinity by comparative microarray analysis. Our result showed that 5790, 3067, 5608, 778 and 6148 transcripts, were differentially expressed in cotton seedlings under treatment of ABA (1 µM ABA), cold (4°C), drought (200 mM mannitol), salinity (200 mM NaCl) and alkalinity (pH=11) respectively. Among the induced or suppressed genes, 126 transcripts were shared by all of the five kinds of abiotic stresses, with 64 up-regulated and 62 down-regulated. These common members are grouped as stress signal transduction, transcription factors (TFs), stress response/defense proteins, metabolism, transport facilitation, as well as cell wall/structure, according to the function annotation. We also noticed that large proportion of significant differentially expressed genes specifically regulated in response to different stress. Nine of the common transcripts of multiple stresses were selected for further validation with quantitative real time RT-PCR (qRT-PCR). Furthermore, several well characterized TF families, for example, WRKY, MYB, NAC, AP2/ERF and zinc finger were shown to be involved in different stresses. As an original report using comparative microarray to analyze transcriptome of cotton under five abiotic stresses, valuable information about functional genes and related pathways of anti-stress, and/or stress tolerance in cotton seedlings was unveiled in our result. Besides this, some important common factors were focused for detailed identification and characterization. According to our analysis, it suggested that there was crosstalk of responsive genes or pathways to multiple abiotic or even biotic stresses, in cotton. These candidate genes will be worthy of functional study under diverse stresses.


Subject(s)
Genes, Plant/genetics , Gossypium/genetics , Abscisic Acid/pharmacology , Droughts , Gene Expression Profiling , Gene Expression Regulation, Plant/drug effects , Gene Expression Regulation, Plant/genetics , Gossypium/drug effects , Salinity , Sodium Chloride/pharmacology
15.
Appl Biochem Biotechnol ; 169(5): 1557-65, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23322251

ABSTRACT

AtNUDT5 is a cytosol Nudix that catalyzes the hydrolysis of a variety of substrates. In this report, a 1,387-bp 5'-flanking region of the AtNUDT5 gene was isolated from Arabidopsis thaliana. The tissue-specific activity of the 5'-flanking region was investigated by using the GUS gene as a reporter in transgenic A. thaliana plants. Weak GUS activity appeared in vascular tissues of young plants, strong GUS activity appeared in the axial roots, but no GUS activity was observed in the root cap, lateral roots, rosette leaf, mature silique and reproductive tissues such as stamen, pistil, and petal. Furthermore, by using these transgenic A. thaliana plants, results of the histochemical staining and fluorometric assays of GUS activity showed that the AtNUDT5 promoter can be activated by both avirulent Pst avrRpm1 and virulent Pst strains at 5 h post-infiltration and that the activity of AtNUDT5 promoter increased significantly at 24 h post-infiltration. Taken together, our results demonstrated that the AtNUDT5 promoter is pathogen-responsive. The promoter may be used to develop transgenic plants with an increased tolerance to pathogenic stresses.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Bacterial Proteins/genetics , Gene Expression Regulation, Plant , Plant Roots/genetics , Pseudomonas syringae/genetics , Pyrophosphatases/genetics , 5' Flanking Region , Arabidopsis/metabolism , Arabidopsis/microbiology , Arabidopsis Proteins/metabolism , Bacterial Proteins/metabolism , Base Sequence , Flowers/genetics , Flowers/metabolism , Flowers/microbiology , Host-Pathogen Interactions , Molecular Sequence Data , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Leaves/microbiology , Plant Roots/metabolism , Plant Roots/microbiology , Plant Stems/genetics , Plant Stems/metabolism , Plant Stems/microbiology , Plants, Genetically Modified , Promoter Regions, Genetic , Pseudomonas syringae/metabolism , Pyrophosphatases/metabolism , Nudix Hydrolases
16.
Genomics ; 94(4): 263-8, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19628031

ABSTRACT

Several miRNA family and their targets in cotton had been identified by computational methods based on the conserved characterization of miRNAs. So far, there are no experiments to validate the existence of miRNAs in cotton. In this study, to analyze the miRNAs in cotton, a small RNA library of sequences from 18 to 26 nt of Gossypium hirsutum seedling has been built by high-throughput sequencing. In this library, 34 conserved miRNA families were identified by homology search and the miRNA sequences of them were also found in the library. Furthermore, potential targets of these conserved miRNA families were predicted in cotton TC library. However, based on the mature miRNAs and their miR sequences, only 8 conserved miRNA encoding loci (miR156, miR157a, miR157b, miR162, miR164, miR393, miR399, miR827) were identified from cotton EST sequences. Multiple encoding loci of some miRNAs were identified by comparing the cloned miRNA and miR sequences.


Subject(s)
Gossypium/genetics , MicroRNAs/analysis , Sequence Analysis, RNA , Base Sequence , Cloning, Molecular , Conserved Sequence , Expressed Sequence Tags , Gene Expression Profiling , Gene Library , Genetic Variation , Genome, Plant , MicroRNAs/genetics , Molecular Sequence Data , Nucleic Acid Conformation , RNA, Plant/genetics , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL
...