Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
1.
J Clin Invest ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753433

ABSTRACT

Cells expressing features of senescence, including upregulation of p21 and p16, appear transiently following tissue injury, yet the properties of these cells or how they contrast with age-induced senescent cells remains unclear. Here, we used skeletal injury as a model and identified the rapid appearance following fracture of p21+ cells expressing senescence markers, mainly as osteochondroprogenitors (OCHs) and neutrophils. Targeted genetic clearance of p21+ cells suppressed senescence-associated signatures within the fracture callus and accelerated fracture healing. By contrast, p21+ cell clearance did not alter bone loss due to aging; conversely, p16+ cell clearance, known to alleviate skeletal aging, did not affect fracture healing. Following fracture, p21+ neutrophils were enriched in signaling pathways known to induce paracrine stromal senescence, while p21+ OCHs were highly enriched in senescence-associated secretory phenotype factors known to impair bone formation. Further analysis revealed an injury-specific stem cell-like OCH subset that was p21+ and highly inflammatory, with a similar inflammatory mesenchymal population (fibro-adipogenic progenitors) evident following muscle injury. Thus, intercommunicating senescent-like neutrophils and mesenchymal progenitor cells were key regulators of tissue repair in bone and potentially across tissues. Moreover, our findings established contextual roles of p21+ vs p16+ senescent/senescent-like cells that may be leveraged for therapeutic opportunities.

2.
J Ethnopharmacol ; 327: 118062, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38492790

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Ligusticum chuanxiong Hort (LCH), with the accepted name of Ligusticum striatum DC in "The Plant List" database, is a widely used ethnomedicine in treating ischemic stroke, and borneol (BO) is usually prescribed with LCH for better therapy. Our previous study confirmed their synergistic effect on neurogenesis against cerebral ischemia. However, the underlying mechanism is still unclear. AIM OF THE STUDY: More and more evidence indicated that astrocytes (ACs) might be involved in the modulation of neurogenesis via polarization reaction. The study was designed to explore the synergic mechanism between LCH and BO in promoting astrocyte-mediated neurogenesis. MATERIALS AND METHODS: After primary cultures and identifications of ACs and neural stem cells (NSCs), the oxygen-glucose deprivation (OGD) model and the concentrations of LCH and BO were optimized. After the OGD-injured ACs were treated by LCH, BO, and their combination, the conditioned mediums were used to culture the OGD-injured NSCs. The proliferation, migration, and differentiation of NSCs were assessed, and the secretions of BDNF, CNTF, and VEGF from ACs were measured. Then the expressions of C3 and PTX3 were detected. Moreover, the mice were performed a global cerebral ischemia/reperfusion model and treated with LCH and (or) BO. After the assessments of Nissl staining, the expressions of Nestin, DCX, GFAP, C3, PTX3, p65 and p-p65 were probed. RESULTS: The most appropriate duration of OGD for the injury of both NSCs and ACs was 6 h, and the optimized concentrations of LCH and BO were 1.30 µg/mL and 0.03 µg/mL, respectively. The moderate OGD environment induced NSCs proliferation, migration, astrogenesis, and neurogenesis, increased the secretions of CNTF and VEGF from ACs, and upregulated the expressions of C3 and PTX3. For the ACs, LCH further increased the secretions of BDNF and CNTF, enhanced PTX3 expression, and reduced C3 expression. Additionally, the conditioned medium from LCH-treated ACs further enhanced NSC proliferation, migration, and neurogenesis. The in vivo study showed that LCH markedly enhanced the Nissl score and neurogenesis, and decreased astrogenesis which was accompanied by downregulations of C3, p-p65, and p-p65/p65 and upregulation of PTX3. BO not only decreased the expression of C3 in ACs both in vitro and in vivo but also downregulated p-p65 and p-p65/p65 in vivo. Additionally, BO promoted the therapeutic effect of LCH for most indices. CONCLUSION: A certain degree of OGD might induce ACs to stimulate the proliferation, astrogenesis, and neurogenesis of NSCs. LCH and BO exhibited a marked synergy in promoting ACs-mediated neurogenesis and reducing astrogenesis, in which LCH played a dominant role and BO boosted the effect of LCH. The mechanism of LCH might be involved in switching the polarization of ACs from A1 to A2, while BO preferred to inhibit the formation of A1 phenotype via downregulating NF-κB pathway.


Subject(s)
Brain Ischemia , Camphanes , Ligusticum , Mice , Animals , Astrocytes , Brain-Derived Neurotrophic Factor/metabolism , Ciliary Neurotrophic Factor/metabolism , Ciliary Neurotrophic Factor/pharmacology , Ciliary Neurotrophic Factor/therapeutic use , Vascular Endothelial Growth Factor A/metabolism , Neurogenesis , Brain Ischemia/drug therapy , Brain Ischemia/metabolism , Cerebral Infarction
3.
bioRxiv ; 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38370844

ABSTRACT

Cells expressing features of senescence, including upregulation of p21 and p16, appear transiently following tissue injury, yet the properties of these cells or how they contrast with age-induced senescent cells remains unclear. Here, we used skeletal injury as a model and identified the rapid appearance following fracture of p21+ cells expressing senescence markers, mainly as osteochondroprogenitors (OCHs) and neutrophils. Targeted genetic clearance of p21+ cells suppressed senescence-associated signatures within the fracture callus and accelerated fracture healing. By contrast, p21+ cell clearance did not alter bone loss due to aging; conversely, p16+ cell clearance, known to alleviate skeletal aging, did not affect fracture healing. Following fracture, p21+ neutrophils were enriched in signaling pathways known to induce paracrine stromal senescence, while p21+ OCHs were highly enriched in senescence-associated secretory phenotype factors known to impair bone formation. Further analysis revealed an injury-specific stem cell-like OCH subset that was p21+ and highly inflammatory, with a similar inflammatory mesenchymal population (fibro-adipogenic progenitors) evident following muscle injury. Thus, intercommunicating senescent-like neutrophils and mesenchymal progenitor cells are key regulators of tissue repair in bone and potentially across tissues. Moreover, our findings establish contextual roles of p21+ vs p16+ senescent/senescent-like cells that may be leveraged for therapeutic opportunities.

4.
Chemosphere ; 352: 141296, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38296214

ABSTRACT

It is feasible to improve the photodegradation efficiency of organic pollutants by metal-organic frameworks (MOF)-based semiconductors via ligand engineering. In this work, three (Fe/Co)-XBDC-based MOFs were synthesized by introducing different ortho-functional groups X (X = -H, -NO2, -NH2) next to the carboxyl group of the organic ligand (i.e., terephthalic acid). The analysis focused on the influence mechanism of the adjacent functional group effect of the ligand on the physicochemical properties of the material and the actual photodegradation activity of TC. Multiple pieces of evidences suggested that the differences in electron-induced and photocharge-transfer mechanisms of the above ortho functional groups affect the crystal morphology and photocatalytic activity of FeCo-MOF during pyrolysis. Interestingly, (Fe/Co)-NH2BDC exhibited the highest photocatalytic activity under neutral conditions. The results of density functional theory show that the introduction of a strong donor-NH2 group can enhance light absorption and act as an "electron pump" to supply electrons to the iron center, accelerating the separation and efficient transport of photogenerated carriers on the ligand-metal bridge. In conclusion, this study is a proposal for a strategy of structural regulation for the enhancement of the catalytic activity of (Fe/Co)-MOFs in the photodegradation of TC.


Subject(s)
Heterocyclic Compounds , Metal-Organic Frameworks , Ligands , Tetracycline , Anti-Bacterial Agents , Electrons
5.
Arthritis Res Ther ; 25(1): 188, 2023 10 02.
Article in English | MEDLINE | ID: mdl-37784156

ABSTRACT

OBJECTIVE: To examine and quantify liver and kidney lesions and their response to anti-tumor necrosis factor (TNF) therapy in a TNF-Tg mouse model of rheumatoid arthritis (RA). METHODS: Female TNF-Tg (Tg3647) mice were used as the animal model for chronic RA. Ultrasound, immunofluorescence, histological staining, serology tests, and real-time RT-PCR were used to examine the pathological changes in the liver and kidney. RESULTS: TNF-Tg mice showed a significant decrease in the body weight and a dramatic increase in the volumes of the gallbladder, knee cavity, and popliteal lymph nodes. The liver and kidneys of TNF-Tg mice showed increased chronic inflammation and accumulation of immune cells and fibrosis, compared to wild-type (WT) mice. Moreover, upregulation of inflammatory factors and impaired normal function were observed in the liver and kidneys of TNF-Tg mice. Inflammatory infiltration and fibrosis of the liver and kidneys of female TNF-Tg mice were improved after anti-TNF treatment, and better treatment effects were achieved at 4.5-month-old mice when they were received 8 weeks of intervention. CONCLUSIONS: We found that TNF drives the development of liver and kidney pathology in female TNF-Tg mice and that there are limitations to the loss of utility of anti-TNF for the prolonged treatment of RA-associated hepatic and renal injury. This study provides a reliable and clinically relevant animal model for further studies exploring the molecular mechanisms and drug discovery for hepatorenal pathologies in RA.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Mice , Animals , Female , Mice, Transgenic , Tumor Necrosis Factor Inhibitors/therapeutic use , Tumor Necrosis Factor-alpha , Disease Models, Animal , Arthritis, Rheumatoid/pathology , Liver/pathology , Fibrosis
6.
JBMR Plus ; 7(10): e10797, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37808391

ABSTRACT

Estrogen regulates bone mass in women and men, but the underlying cellular mechanisms of estrogen action on bone remain unclear. Although both estrogen receptor (ER)α and ERß are expressed in bone cells, ERα is the dominant receptor for skeletal estrogen action. Previous studies using either global or cell-specific ERα deletion provided important insights, but each of these approaches had limitations. Specifically, either high circulating sex steroid levels in global ERα knockout mice or the effects of deletion of ERα during growth and development in constitutive cell-specific knockout mice have made it difficult to clearly define the role of ERα in specific cell types in the adult skeleton. We recently generated and characterized mice with tamoxifen-inducible ERα deletion in osteocytes driven by the 8-kb Dmp1 promoter (ERαΔOcy mice), revealing detrimental effects of osteocyte-specific ERα deletion on trabecular bone volume (-20.1%) and bone formation rate (-18.9%) in female, but not male, mice. Here, we developed and characterized analogous mice with inducible ERα deletion in osteoclasts using the Cathepsin K promoter (ERαΔOcl mice). In a study design identical to that with the previously described ERαΔOcy mice, adult female, but not male, ERαΔOcl mice showed a borderline (-10.2%, p = 0.084) reduction in trabecular bone volume, no change in osteoclast numbers, but a significant increase in serum CTx levels, consistent with increased osteoclast activity. These findings in ERαΔOcl mice differ from previous studies of constitutive osteoclast-specific ERα deletion, which led to clear deficits in trabecular bone and increased osteoclast numbers. Collectively, these data indicate that in adult mice, estrogen action in the osteocyte is likely more important than via the osteoclast and that ERα deletion in osteoclasts from conception onward has more dramatic skeletal effects than inducible osteoclastic ERα deletion in adult mice. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

7.
Phytomedicine ; 110: 154610, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36584607

ABSTRACT

BACKGROUND: Breast cancer is one of the most common cancers in women, affecting more than 2 million women worldwide annually. However, effective treatments for breast cancer are limited. Nobiletin is a flavonoid present in the dried mature pericarp of mandarin orange (Citrus reticulata Blanco), which is used to prepare Citri Renetulatae Pericarpium and can inhibit tumour growth and progression according to modern pharmacological studies. However, whether nobiletin exhibits an antimetastatic role in breast cancer and its potential mechanism need to be further investigated. PURPOSE: This study aims to evaluate the inhibitory effect of nobiletin on breast cancer and to elucidate potential mechanisms against invasion and migration. METHODS: Cell viability was determined by cell counting kit-8 and colony formation assays. Wound healing and Boyden chamber assays detected cancer cell migration and invasion capabilities. Immunoblotting and qPCR were applied to determine the protein and mRNA expression levels of extracellular signal-regulated kinases (ERK) and the c-Jun N-terminal kinase (JNK) signalling pathways. Molecular docking was used to assess the degree of nobiletin binding to phosphatidylinositol 3-kinase (PI3K). Xenografts and liver metastases were constructed in BALB/c nude mice to evaluate the anticancer effect of nobiletin in vivo. H&E staining and immunohistochemistry were used to detect proliferation and the expression of related proteins. RESULTS: Nobiletin induced cell death in a concentration- and time-dependent manner and possessed anti-invasion and anti-migration effects on MCF-7 and T47D cells by suppressing the interleukin-6-induced ERK and JNK signalling pathways. In addition, nobiletin docked with the binding site of PI3K, and the binding score was -8.0 kcal/mol. Furthermore, the inhibition of breast cancer growth and metastasis by nobiletin was demonstrated by constructing xenografts and liver metastases in vivo. CONCLUSION: Nobiletin inhibited liver metastasis of breast cancer by downregulating the ERK-STAT and JNK-c-JUN pathways, and its safety and efficacy were verified, indicating the potential of nobiletin as an anticancer agent.


Subject(s)
Extracellular Signal-Regulated MAP Kinases , Liver Neoplasms , Animals , Female , Humans , Mice , Cell Line, Tumor , Cell Movement , Cell Proliferation , Extracellular Signal-Regulated MAP Kinases/metabolism , Interleukin-6/pharmacology , Mice, Nude , Molecular Docking Simulation , Phosphatidylinositol 3-Kinases/metabolism
8.
Am J Phys Med Rehabil ; 102(4): 331-339, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36075885

ABSTRACT

OBJECTIVE: The aim of the study is to systematically review the effects of leg-driven treadmill-based exoskeleton robot training on balance and walking ability in poststroke patients. DESIGN: The PubMed, Cochrane Library, Embase, Web of Science, Medline, CNKI, VIP, and Wanfang databases were searched from inception to August 2021. The literature quality was evaluated using Cochrane Handbook. Primary outcomes include the Functional Ambulation Category Scale and Berg Balance Scale, and secondary outcomes include the 10 meter walk test, 6 minute walk test, and gait assessment cadence were analyzed. RESULTS: Seventeen randomized controlled trials were included in the systematic review, 15 studies in meta-analysis. Primary outcomes showed no significant difference in the Functional Ambulation Category Scale score; subgroup with the exoskeleton robot + conventional therapy of the Berg Balance Scale score was significantly increased; secondary outcomes showed no significance in 6 minute walk test or 10 meter walk test. The cadence score increased for the subgroup with an onset of more than 6 mos in the treatment group. The control group performed better than the subgroup with an onset of less than 6 mos. CONCLUSIONS: Leg-driven treadmill-based exoskeleton robot training can improve balance function in poststroke patients and is beneficial for patients with an onset of greater than 6 mos. However, there is no evidence to support the efficacy of walking ability.


Subject(s)
Exoskeleton Device , Robotics , Stroke Rehabilitation , Humans , Leg , Walking , Gait , Exercise Therapy
9.
J Ethnopharmacol ; 301: 115764, 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36183951

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Ligusticum striatum DC., also known as Ligusticum chuanxiong Hort. (LCH), is widely used in China for its excellent effect in ischaemic stroke (IS) patients, and borneol (BO) has been confirmed to maintain the blood‒brain barrier (BBB) after stroke. They are often used as a combination in the prescriptions of IS patients. Although the advantage of their combined treatment in improving brain ischaemia has been verified, their synergistic mechanism on BBB maintenance is still unclear. AIM OF THE STUDY: This study was designed to evaluate the synergistic effect of maintaining the BBB between LCH and BO against IS and to further explore the potential mechanism. MATERIALS AND METHODS: After primary mouse brain microvascular endothelial cells (BMECs) were extracted and identified, the duration of oxygen-glucose deprivation (OGD) and the doses of LCH and BO were optimized. Then, the cells were divided into five groups: control, model, LCH, BO, and LCH + BO. Cell viability, injury degree, proliferation and migration were detected by CCK-8, LDH, EdU and wound-healing assays, respectively. Hoechst 33342 staining was adopted to detect the apoptosis rate, and western blotting was employed to observe the expressions of Bax, Bcl-2, caspase-3 and cleaved caspase-3. The TEER value and NaF permeability were measured to assess tight junction (TJ) function, while ZO-1, occludin and claudin-5 were also probed by western blotting. Moreover, the HIF-1α/VEGF pathway was observed to explore the underlying mechanism of BBB maintenance. In vivo, global cerebral ischaemia/reperfusion (GCIR) surgery was performed to establish an IS model. After treatment with LCH (200 mg/kg) and/or BO (160 mg/kg), histopathological structure and BMECs repair were observed by HE staining and immunohistochemistry of vWF. Meanwhile, TJ-associated proteins in vivo were also detected by western blotting. RESULTS: Basically, LCH and BO had different emphases. LCH significantly attenuated the vacuolar structure, nuclear pyknosis and neuronal loss of GCIR mice, while BO focused on promoting BMECs proliferation and angiogenesis and inhibiting the degradation of TJ-associated proteins in vivo after IS. Interestingly, their combination further enhanced these effects. OGD injury markedly reduced the viability, proliferation and migration of primary BMECs; decreased the ratio of Bcl-2/Bax, TEER value, and the expressions of ZO-1, occludin and claudin-5; induced LDH release and apoptosis; and increased the cleaved caspase-3/caspase-3 ratio and NaF permeability. Meanwhile, BO might be the main contributor to the combinative treatment in ameliorating OGD-induced damage of BMECs and degradation of TJ-related proteins, and the potential mechanism might be involved in upregulating the HIF-1α/VEGF signalling pathway. Although LCH showed no obvious improvement, it could enhance the therapeutic effect of BO. Interestingly, their combination even produced some new improvements, including the reduction of cleaved caspase-3 and increase in TEER value, none of which were exhibited in their monotherapies. CONCLUSIONS: LCH and BO exhibited complementary therapeutic features in alleviating cerebral ischaemic injury by inhibiting BMECs apoptosis, maintaining the BBB and attenuating the loss of neurons. LCH preferred to protect ischaemic neurons, while BO played a key role in protecting BMECs, maintaining the BBB and TJs by activating the HIF-1α/VEGF signalling pathway.


Subject(s)
Brain Ischemia , Ligusticum , Stroke , Animals , Mice , bcl-2-Associated X Protein/metabolism , Blood-Brain Barrier , Brain Ischemia/metabolism , Caspase 3/metabolism , Claudin-5/metabolism , Endothelial Cells , Glucose/metabolism , Occludin/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Stroke/drug therapy , Tight Junction Proteins/metabolism , Tight Junctions , Vascular Endothelial Growth Factor A/metabolism
10.
Bioconjug Chem ; 33(12): 2332-2340, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36350013

ABSTRACT

Human serum albumin (HSA) is the most abundant protein in human blood plasma. It plays a critical role in the native transportation of numerous drugs, metabolites, nutrients, and small molecules. HSA has been successfully used clinically as a noncovalent carrier for insulin (e.g., Levemir), GLP-1 (e.g., Liraglutide), and paclitaxel (e.g., Abraxane). Site-specific bioconjugation strategies for HSA only would greatly expand its role as the biocompatible, non-toxic platform for theranostics purposes. Using the enabling one-bead one-compound (OBOC) technology, we generated combinatorial peptide libraries containing myristic acid, a well-known binder to HSA at Sudlow I and II binding pockets, and an acrylamide. We then used HSA as a probe to screen the OBOC myristylated peptide libraries for reactive affinity elements (RAEs) that can specifically and covalently ligate to the lysine residue at the proximity of these pockets. Several RAEs have been identified and confirmed to be able to conjugate to HSA covalently. The conjugation can occur at physiological pH and proceed with a high yield within 1 h at room temperature. Tryptic peptide profiling of derivatized HSA has revealed two lysine residues (K225 and K414) as the conjugation sites, which is much more specific than the conventional lysine labeling strategy with N-hydroxysuccinimide ester. The RAE-driven site-specific ligation to HSA was found to occur even in the presence of other prevalent blood proteins such as immunoglobulin or whole serum. Furthermore, these RAEs are orthogonal to the maleimide-based conjugation strategy for Cys34 of HSA. Together, these attributes make the RAEs the promising leads to further develop in vitro and in vivo HSA bioconjugation strategies for numerous biomedical applications.


Subject(s)
Serum Albumin, Human , Serum Albumin , Humans , Serum Albumin, Human/chemistry , Serum Albumin/metabolism , Lysine/metabolism , Peptide Library , Peptides/metabolism , Protein Binding
11.
J Bone Miner Res ; 37(9): 1750-1760, 2022 09.
Article in English | MEDLINE | ID: mdl-35789113

ABSTRACT

Estrogen is known to regulate bone metabolism in both women and men, but substantial gaps remain in our knowledge of estrogen and estrogen receptor alpha (ERα) regulation of adult bone metabolism. Studies using global ERα-knockout mice were confounded by high circulating sex-steroid levels, and osteocyte/osteoblast-specific ERα deletion may be confounded by ERα effects on growth versus the adult skeleton. Thus, we developed mice expressing the tamoxifen-inducible CreERT2 in osteocytes using the 8-kilobase (kb) Dmp1 promoter (Dmp1CreERT2 ). These mice were crossed with ERαfl//fl mice to create ERαΔOcy mice, permitting inducible osteocyte-specific ERα deletion in adulthood. After intermittent tamoxifen treatment of adult 4-month-old mice for 1 month, female, but not male, ERαΔOcy mice exhibited reduced spine bone volume fraction (BV/TV (-20.1%, p = 0.004) accompanied by decreased trabecular bone formation rate (-18.9%, p = 0.0496) and serum P1NP levels (-38.9%, p = 0.014). Periosteal (+65.6%, p = 0.004) and endocortical (+64.1%, p = 0.003) expansion were higher in ERαΔOcy mice compared to control (Dmp1CreERT2 ) mice at the tibial diaphysis, reflecting the known effects of estrogen to inhibit periosteal apposition and promote endocortical formation. Increases in Sost (2.1-fold, p = 0.001) messenger RNA (mRNA) levels were observed in trabecular bone at the spine in ERαΔOcy mice, consistent with previous reports that estrogen deficiency is associated with increased circulating sclerostin as well as bone SOST mRNA levels in humans. Further, the biological consequences of increased Sost expression were reflected in significant overall downregulation in panels of osteoblast and Wnt target genes in osteocyte-enriched bones from ERαΔOcy mice. These findings thus establish that osteocytic ERα is critical for estrogen action in female, but not male, adult bone metabolism. Moreover, the reduction in bone formation accompanied by increased Sost, decreased osteoblast, and decreased Wnt target gene expression in ERαΔOcy mice provides a direct link in vivo between ERα and Wnt signaling. © 2022 American Society for Bone and Mineral Research (ASBMR).


Subject(s)
Estrogen Receptor alpha , Osteocytes , Adaptor Proteins, Signal Transducing/metabolism , Adult , Animals , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Estrogens/metabolism , Estrogens/pharmacology , Female , Humans , Infant , Intercellular Signaling Peptides and Proteins/metabolism , Male , Mice , Mice, Knockout , Osteoblasts/metabolism , Osteocytes/metabolism , RNA, Messenger/metabolism , Tamoxifen/pharmacology
12.
BMC Complement Med Ther ; 22(1): 185, 2022 Jul 11.
Article in English | MEDLINE | ID: mdl-35818037

ABSTRACT

BACKGROUND: As an original traditional Chinese medicinal formula, Qin Huang formula (QHF) is used as adjuvant therapy for treating lymphoma in our hospital and has proven efficacy when combined with chemotherapy. However, the underlying mechanisms of QHF have not been elucidated. METHODS: A network pharmacological-based analysis method was used to screen the active components and predict the potential mechanisms of QHF in treating B cell lymphoma. Then, a murine model was built to verify the antitumor effect of QHF combined with Adriamycin (ADM) in vivo. Finally, IHC, ELISA, 18F-FDG PET-CT scan, and western blot were processed to reveal the intriguing mechanism of QHF in treating B cell lymphoma. RESULTS: The systemic pharmacological study revealed that QHF took effect following a multiple-target and multiple-pathway pattern in the human body. In vivo study showed that combination therapy with QHF and ADM potently inhibited the growth of B cell lymphoma in a syngeneic murine model, and significantly increased the proportion of tumor infiltrating CD4+ and CD8+ T cells in the tumor microenvironment (TME). Furthermore, the level of CXCL10 and IL-6 was significantly increased in the combination group. Finally, the western blot exhibited that the level of TLR2 and p38 MAPK increased in the combination therapy group. CONCLUSION: QHF in combination of ADM enhances the antitumor effect of ADM via modulating tumor immune microenvironment and can be a combination therapeutic strategy for B cell lymphoma patients.


Subject(s)
Lymphoma, B-Cell , Neoplasms , Animals , Disease Models, Animal , Doxorubicin/pharmacology , Humans , Lymphocytes, Tumor-Infiltrating , Mice , Positron Emission Tomography Computed Tomography , Signal Transduction , Toll-Like Receptors , Tumor Microenvironment
13.
Aging (Albany NY) ; 14(12): 5153-5162, 2022 06 27.
Article in English | MEDLINE | ID: mdl-35771149

ABSTRACT

Matrine has been shown to play a role in the suppression of gastric cancer (GC) tumorigenesis. However, whether long non-coding RNA NUT family member 2A-antisense RNA 1 (NUTM2A-AS1) is involved in matrine-induced inhibition of GC remains unknown. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, cell colony formation, and terminal deoxynucleotidyl transferase dUTP nick-end labeling assays were employed to determine the proliferation, viability, and apoptosis of GC cells, respectively. The Cancer Genome Atlas database suggested an association between NUTM2A-AS1 and GC. The reverse transcription-quantitative polymerase chain reaction was used to quantify relative levels of NUTM2A-AS1, miR-613, and vascular endothelial growth factor A (VEGFA). Reactive oxygen species generation, glutathione content, and superoxide dismutase activity were determined by corresponding reagents or assay kits. NUTM2A-AS1 knockdown led to attenuated cell viability and proliferation, as well as to enhanced apoptosis of N87 and AGS cells treated with matrine. These changes were prevented by an inhibitor of microRNA (miR)-613. Importantly, NUTM2A-AS1 expression was positively associated with tumor progression in patients with GC. NUTM2A-AS1 and miR-613 regulated the generation of reactive oxygen species, the content of glutathione, and the activity of superoxide dismutase. VEGFA served as an important effector for the NUTM2A-AS1/miR-613-regulated resistance of GC cells to matrine. These results reveal a novel mechanism of matrine resistance in GC.


Subject(s)
MicroRNAs , RNA, Long Noncoding , Stomach Neoplasms , Alkaloids , Cell Line, Tumor , Cell Proliferation/genetics , Family , Gene Expression Regulation, Neoplastic , Glutathione/metabolism , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Oxidative Stress , Quinolizines , RNA, Antisense/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Reactive Oxygen Species/metabolism , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Superoxide Dismutase/metabolism , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Matrines
14.
J Ethnopharmacol ; 287: 114904, 2022 Apr 06.
Article in English | MEDLINE | ID: mdl-34952191

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Fuzheng Xiaojijinzhan (FZXJJZF) decoction is an effective prescription for treating colorectal cancer liver metastasis (LMCRC). AIM OF THE STUDY: To elucidate the pharmacological mechanism of the FZXJJZF decoction therapy on LMCRC. MATERIALS AND METHODS: Firstly, a network pharmacological approach was used to characterize the underlying targets of FZXJJZF on LMCRC. Secondly, LMCRC-related genes are obtained from the public database TCGA, and those genes are further screened and clustered through Mfuzz, an R package tool. Then, targets of FZXJJZF predicted by network pharmacology were overlapped with LMCRC related genes screened by Mfuzz. Meanwhile, FZJZXJF intervened in LMCRC model,epithelial-to-mesenchymal transition (EMT), and migration and invasion of HCT-116 cells. Thirdly, the transcriptomics data of FZJZXJF inhibited HCT-116 cells of EMT cells were overlapped with EMT database data to narrow the possible range of targets. Based on this, the potential targets and signal pathways of FZJZXJF were speculated by combining the transcriptomics data with the targets from network pharmacology-TCGA. Finally, the anti-cancer mechanism of FZXJJZF on LMCRC was verified in vitro by Real-Time PCR and Western Blot in vitro. RESULTS: By network pharmacological analysis, 282 ingredients and 429 potential targets of FZXJJZF were predicted. The 9268 LMCRC-related genes in the TCGA database were classified into 10 clusters by the Mfuzz. The two clustering genes with the most similar clustering trends were overlapped with 429 potential targets, and 32 genes were found, such as CD34, TRPV3, PGR, VDR, etc. In vivo experiments, FZJZXJF inhibited the tumor size in LMCRC models, and the EMT, migration, and invasion of HCT-116 also be inhibited. Intersecting transcriptomics dates with 32 target genes, it is speculated that the VDR-TGF-ß signaling pathway may be an effective mechanism of FZXJJZF. Additionally, it is shown that FZXJJZF up-regulated the expression levels of VDR and E-cadherin and down-regulated the expression levels of TGF-ß and Snail1 in vitro. These results confirmed that FZXJJZF plays an effective role in LMCRC mainly by inhibiting EMT phenotype via the VDR-TGF-ß signaling pathway. CONCLUSIONS: Collectively, this study reveals the anti-LMCRC effect of FZXJJZF and its potential therapeutic mechanism from the perspective of potential targets and potential pathways.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Colorectal Neoplasms/drug therapy , Drugs, Chinese Herbal/pharmacology , Liver Neoplasms/prevention & control , Animals , Cell Movement/drug effects , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Epithelial-Mesenchymal Transition/drug effects , HCT116 Cells , Humans , Liver Neoplasms/genetics , Liver Neoplasms/secondary , Mice , Mice, Nude , Neoplasm Invasiveness/prevention & control , Network Pharmacology , Receptors, Calcitriol/metabolism , Signal Transduction/drug effects , Snail Family Transcription Factors/metabolism , Transcriptome , Transforming Growth Factor beta/metabolism
15.
Front Pharmacol ; 12: 666790, 2021.
Article in English | MEDLINE | ID: mdl-34220506

ABSTRACT

Background: Ligusticum chuanxiong Hort (LCH) is a famous ethnomedicine in Asia known for its excellent output on stroke treatment, and borneol usually acts as an assistant for its reducing permeability of the blood-brain barrier (BBB) after stroke. Although their synergy against brain ischemia was verified in previous studies, the potential mechanism is still unknown. Methods: The research aimed to explore the exact synergic mechanisms between LCH and borneol on neurogenesis within the areas of the dentate gyrus and subventricular zone. After treating middle cerebral artery occlusion rats with LCH (0.1 g/kg) and/or borneol (0.08 g/kg), the neurological severity score, brain infarct ratio, Nissl staining, Evans blue permeability, BBB ultrastructure, and expressions of von Willebrand factor and tight junction-associated proteins were measured. Co-localizations of Nestin+/BrdU+ and doublecortin+/BrdU+, and expressions of neuronal nuclei (NeuN) and glial fibrillary acidic protein (GFAP) were observed under a fluorescence microscope. Moreover, astrocyte polarization markers of complement component 3 and pentraxin 3, and relevant neurotrophins were also detected by immunoblotting. Results: Basically, LCH and borneol had different focuses, although both of them decreased infarct areas, and increased quantity of Nissl bodies and expression of brain-derived neurotrophic factor. LCH increased the neurological severity score, NeuN+ cells, and the ratios of Nestin+/BrdU+ and doublecortin+/BrdU+, and decreased GFAP+ cells and ciliary neurotrophic factor expression. Additionally, it regulated the expressions of complement component 3 and pentraxin 3 to transform astrocyte phenotypes. Borneol improved BBB ultrastructure and increased the expressions of von Willebrand factor, tight junction-associated proteins, vascular endothelial growth factor, and vascular endothelial growth factor receptor 2. Unexpectedly, their combined therapy showed more obvious regulations on the Nissl score, Evans blue permeability, doublecortin+/BrdU+, NeuN+ cells, brain-derived neurotrophic factor, and vascular endothelial growth factor than both of their monotherapies. Conclusions: The results indicated that LCH and borneol were complementary to each other in attenuating brain ischemia by and large. LCH mainly promoted neural stem cell proliferation, neurogenesis, and mature neuron preservation, which was probably related to the transformation of reactive astrocytes from A1 subtype to A2, while borneol preferred to maintain the integrity of the BBB, which provided neurogenesis with a homeostatic environment.

16.
J Neurosci Methods ; 348: 109011, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33249180

ABSTRACT

BACKGROUND: The construction of multichannel micro-electrode arrays (MEA) generally requires complex and expensive procedures. Here we describe a simple, cheap, flexible method of linear MEA construction. NEW METHOD: Our method allows manufacture of linear MEA (cross section ∼ 375 × 250 µm with 12 electrodes) of any desired length, with customized spacing of the electrode tips (down to a minimum spacing of 200 µm or less) to suit different needs and experiments. We describe the following steps: (1) set-up for MEA construction; (2) building of a construction jig; (3) building the reference, ground and optional electrical stimulation electrodes; (4) treatment of the main recording microwires; (5) soldering of the microwires to the main connector plug and arrangement of the microwires in a customizable array; and (6) testing of the MEA resistance and correct connections. Finally, we describe methods for quick surgical implantation of multiple MEAs and bipolar micro-stimulation electrodes for in vivo experiments in free-moving rats. RESULTS: We provide examples of multi-site local field potentials from prolonged recordings in awake and free-moving rodents, with recordings viable for months, as well as samples of electrical stimulation effects on cortical and hippocampal recordings. Hippocampal recordings showed clear phase reversal and amplitude changes across its layers. CONCLUSIONS: We briefly discuss how the arrays can support other forms of stimulation such as optogenetic probes.


Subject(s)
Brain , Hippocampus , Animals , Electric Stimulation , Microelectrodes , Rats , Rodentia
17.
Hippocampus ; 31(2): 201-212, 2021 02.
Article in English | MEDLINE | ID: mdl-33171002

ABSTRACT

Theta oscillations in the hippocampus have many behavioral correlates, with the magnitude and vigor of ongoing movement being the most salient. Many consider correlates of locomotion with hippocampal theta to be a confound in delineating theta contributions to cognitive processes. Theory and empirical experiments suggest theta-movement relationships are important if spatial navigation is to support higher cognitive processes. In the current study, we tested if variations in speed modulation of hippocampal theta can predict spatial learning rates in the water maze. Using multi-step regression, we find that the magnitude and robustness of hippocampal theta frequency versus speed scaling can predict water maze learning rates. Using a generalized linear model, we also demonstrate that speed and water maze learning are the best predictors of hippocampal theta frequency and amplitude. Our findings suggest movement-speed correlations with hippocampal theta frequency may be actively used in spatial learning.


Subject(s)
Spatial Navigation , Theta Rhythm , Hippocampus , Maze Learning , Spatial Learning
18.
Ann Saudi Med ; 40(3): 255-258, 2020.
Article in English | MEDLINE | ID: mdl-32493047

ABSTRACT

Colonic varices are lesser-known in comparison with gastroesophageal varices in a complication associated with liver cirrhosis. The ideal therapeutic intervention for a colonic varix is still unclear. We report a 42 year-old man with 20 years of alcohol use who presented with hematochezia and abdominal distension. The patient was diagnosed with alcoholic liver cirrhosis. The colonoscopy revealed a dilated and tortuous varix in the transverse colon close to the hepatic flexure with oozing blood, a communicating branch and with "red sign", evidence of acute bleeding. Endoscopic band ligation (EBL), the most useful intervention for esophageal varices, was further successfully performed to arrest the bleeding colonic varices. One month after initial treatment, the colonic varices nearly vanished and were replaced by an ulcer. It is extremely rare for colonic varices to be treated with EBL. There is only one similar case in reported literature, but it seems to be safe and effective as an intervention for EBL for acute colonic variceal bleeding. SIMILAR CASES: Second case treated by endoscopic band ligation.


Subject(s)
Colon/blood supply , Colonic Diseases/surgery , Colonoscopy/methods , Gastrointestinal Hemorrhage/surgery , Ligation/methods , Varicose Veins/surgery , Adult , Colonic Diseases/etiology , Gastrointestinal Hemorrhage/etiology , Humans , Male , Varicose Veins/complications
19.
Nat Commun ; 11(1): 87, 2020 01 07.
Article in English | MEDLINE | ID: mdl-31911667

ABSTRACT

Bone remodeling consists of resorption by osteoclasts followed by formation by osteoblasts, and osteoclasts are a source of bone formation-stimulating factors. Here we utilize osteoclast ablation by denosumab (DMAb) and RNA-sequencing of bone biopsies from postmenopausal women to identify osteoclast-secreted factors suppressed by DMAb. Based on these analyses, LIF, CREG2, CST3, CCBE1, and DPP4 are likely osteoclast-derived coupling factors in humans. Given the role of Dipeptidyl Peptidase-4 (DPP4) in glucose homeostasis, we further demonstrate that DMAb-treated participants have a significant reduction in circulating DPP4 and increase in Glucagon-like peptide (GLP)-1 levels as compared to the placebo-treated group, and also that type 2 diabetic patients treated with DMAb show significant reductions in HbA1c as compared to patients treated either with bisphosphonates or calcium and vitamin D. Thus, our results identify several coupling factors in humans and uncover osteoclast-derived DPP4 as a potential link between bone remodeling and energy metabolism.


Subject(s)
Bone and Bones/metabolism , Energy Metabolism , Osteoblasts/metabolism , Osteoclasts/metabolism , Aged , Aged, 80 and over , Animals , Bone Remodeling , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Denosumab/administration & dosage , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/physiopathology , Dipeptidyl Peptidase 4/genetics , Dipeptidyl Peptidase 4/metabolism , Energy Metabolism/drug effects , Female , Humans , Middle Aged , Osteoblasts/drug effects , Osteoclasts/drug effects , Prospective Studies , Repressor Proteins/genetics , Repressor Proteins/metabolism , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...