Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 64(22): 16380-16421, 2021 11 25.
Article in English | MEDLINE | ID: mdl-34784195

ABSTRACT

The limitations of current chemotherapeutic drugs are still a major issue in cancer treatment. Thus, targeted multimodal therapeutic approaches need to be strategically developed to successfully control tumor growth and prevent metastatic burden. Inflammation has long been recognized as a hallmark of cancer and plays a key role in the tumorigenesis and progression of the disease. Several epidemiological, clinical, and preclinical studies have shown that traditional nonsteroidal anti-inflammatory drugs (NSAIDs) exhibit anticancer activities. This Perspective reports the most recent outcomes for the treatment and prevention of different types of cancers for several NSAIDs alone or in combination with current chemotherapeutic drugs. Furthermore, an extensive review of the most promising structural modifications is reported, such as phospho, H2S, and NO releasing-, selenium-, metal complex-, and natural product-NSAIDs, among others. We also provide a perspective about the new strategies used to obtain more efficient NSAID- or NSAID derivative- formulations for targeted delivery.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Neoplasms/drug therapy , Animals , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Antineoplastic Agents/therapeutic use , Cyclooxygenase Inhibitors/chemistry , Cyclooxygenase Inhibitors/pharmacology , Cyclooxygenase Inhibitors/therapeutic use , Drug Repositioning , Drug Therapy, Combination , Humans , Inflammation/drug therapy , Neoplasms/pathology , Neoplasms/prevention & control , Structure-Activity Relationship
2.
Int J Mol Sci ; 21(23)2020 Nov 27.
Article in English | MEDLINE | ID: mdl-33260948

ABSTRACT

Aspirin (ASA) has attracted wide interest of numerous scientists worldwide thanks to its chemopreventive and chemotherapeutic effects, particularly in colorectal cancer (CRC). Incorporation of selenium (Se) atom into ASA has greatly increased their anti-tumoral efficacy in CRC compared with the organic counterparts without the Se functionality, such as the promising antitumoral methylseleno-ASA analog (1a). Nevertheless, the efficacy of compound 1a in cancer cells is compromised due to its poor solubility and volatile nature. Thus, 1a has been formulated with native α-, ß- and γ-cyclodextrin (CD), a modified ß-CD (hydroxypropyl ß-CD, HP-ß-CD) and Pluronic F127, all of them non-toxic, biodegradable and FDA approved. Water solubility of 1a is enhanced with ß- and HP- ß-CDs and Pluronic F127. Compound 1a forms inclusion complexes with the CDs and was incorporated in the hydrophobic core of the F127 micelles. Herein, we evaluated the cytotoxic potential of 1a, alone or formulated with ß- and HP- ß-CDs or Pluronic F127, against CRC cells. Remarkably, 1a formulations demonstrated more sustained antitumoral activity toward CRC cells. Hence, ß-CD, HP-ß-CD and Pluronic F127 might be excellent vehicles to improve pharmacological properties of organoselenium compounds with solubility issues and volatile nature.


Subject(s)
Antineoplastic Agents/therapeutic use , Aspirin/therapeutic use , Colonic Neoplasms/drug therapy , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Aspirin/chemistry , Aspirin/pharmacology , Cell Proliferation/drug effects , Drug Liberation , HT29 Cells , Humans , Micelles , Poloxamer/chemistry , Proton Magnetic Resonance Spectroscopy , Solubility , Spectrometry, Fluorescence , Water/chemistry , beta-Cyclodextrins/chemistry
3.
Antioxidants (Basel) ; 9(1)2020 Jan 08.
Article in English | MEDLINE | ID: mdl-31936213

ABSTRACT

Selenium compounds are pivotal in medicinal chemistry for their antitumoral and antioxidant properties. Forty seven acylselenoureas have been designed and synthesized following a fragment-based approach. Different scaffolds, including carbo- and hetero-cycles, along with mono- and bi-cyclic moieties, have been linked to the selenium containing skeleton. The dose- and time-dependent radical scavenging activity for all of the compounds were assessed using the in vitro 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) assays. Some of them showed a greater radical scavenging capacity at low doses and shorter times than ascorbic acid. Therefore, four compounds were evaluated to test their protective effects against H2O2-induced oxidative stress. One derivative protected cells against H2O2-induced damage, increasing cell survival by up to 3.6-fold. Additionally, in vitro cytotoxic activity of all compounds was screened against several cancer cells. Eight compounds were selected to determine their half maximal inhibitory concentration (IC50) values towards breast and lung cancer cells, along with their selectivity indexes. The breast cancer cells turned out to be much more sensitive than the lung. Two compounds (5d and 10a) stood out with IC50 values between 4.2 µM and 8.0 µM towards MCF-7 and T47D cells, with selectivity indexes greater than 22.9. In addition, compound 10b exhibited dual antioxidant and cytotoxic activities. Although further evidence is needed, the acylselenourea scaffold could be a feasible frame to develop new dual agents.

4.
RSC Adv ; 10(63): 38404-38408, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-35517563

ABSTRACT

An effective and straightforward synthesis of 3-seleno functionalized indolinone (5) involving Vilsmeier reagent is presented. Likewise, a procedure to achieve lactamization of diclofenac with excellent yields by using hydrides is also ascertained. Compound 5 exhibited impressive growth inhibition in most of the cell lines in an NCI-60 panel, particularly towards resistant breast cancer cells.

5.
J Med Chem ; 63(4): 1473-1489, 2020 02 27.
Article in English | MEDLINE | ID: mdl-31638805

ABSTRACT

Incorporation of selenium (Se) atom into small molecules can substantially enhance their antioxidant, anti-inflammatory, antimutagenic, antitumoral or chemopreventive, antiviral, antibacterial, antifungal, antiparasitic, and neuroprotective effects. Specifically, selenazo compounds have received great attention owing to their chemical properties, pharmaceutical applications, and low toxicity. In this Perspective, we compile extensive literature evidence with the description and discussion of the most recent advances in different selenazo and selenadiazo motifs as potential pharmacological candidates. We also provide some perspectives on the challenges and future directions in the advancement of these selenazo compounds, each of which could generate drug candidates for various diseases.


Subject(s)
Azoles/therapeutic use , Organoselenium Compounds/therapeutic use , Animals , Azoles/chemistry , Azoles/pharmacology , Cell Line, Tumor , Drug Development , Humans , Isoindoles , Molecular Structure , Organoselenium Compounds/chemistry , Organoselenium Compounds/pharmacology
6.
Eur J Med Chem ; 157: 14-27, 2018 Sep 05.
Article in English | MEDLINE | ID: mdl-30071406

ABSTRACT

Twenty-seven novel benzo[c][1,2,5]selenadiazole-5-carboxylic acid (BSCA) derivatives were designed and synthesized. Anti-proliferative activity of these structures was tested in vitro against a panel of five human cancer cell lines, including prostate (PC-3), colon (HT-29), leukemia (CCRF-CEM), lung (HTB-54) and breast (MCF-7). Four compounds (5, 6, 7 and 19) showed potent inhibitory activity with GI50 values below 10 µM in at least one of the cancer cell lines. The selectivity of these compounds was further examined in two non-malignant cell lines derived from breast (184B5) and lung (BEAS-2B). Compound 7 exhibited promising anti-proliferative activity (GI50 = 3.7 µM) in MCF-7 cells, together with high selectivity index (SI > 27.1). The induction of cell death by compound 7 was independent of the apoptotic process and it did not affect cell cycle progression either. Likewise, radical scavenging properties of the new selenadiazole derivatives were confirmed by testing their ability to scavenge DPPH radicals. Four compounds (1, 2, 8 and 9) showed potent radical scavenging activity, compound 9 being the most effective. Overall, while compound 7 was identified as the most cell growth inhibitory agent and selectively toxic to cancer cells, compound 9 proved to be the most potent antioxidant among the selenadiazole derivatives synthesized. This series of compounds can serve as an excellent scaffold to achieve new and potent antioxidant compounds useful for several diseases, i.e. cancer, neurodegenerative, heart diseases and leishmaniasis, considering the high radical scavenging activity and low toxicity showed by most of the compounds.


Subject(s)
Antineoplastic Agents/pharmacology , Free Radical Scavengers/pharmacology , Organoselenium Compounds/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Biphenyl Compounds/antagonists & inhibitors , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Crystallography, X-Ray , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Free Radical Scavengers/chemical synthesis , Free Radical Scavengers/chemistry , Humans , Models, Molecular , Molecular Structure , Organoselenium Compounds/chemical synthesis , Organoselenium Compounds/chemistry , Picrates/antagonists & inhibitors , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...