Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PDA J Pharm Sci Technol ; 71(2): 68-87, 2017.
Article in English | MEDLINE | ID: mdl-27974627

ABSTRACT

A simulating leaching (migration) study was performed on a model container-closure system relevant to parenteral and ophthalmic drug products. This container-closure system consisted of a linear low-density polyethylene bottle (primary container), a polypropylene cap and an elastomeric cap liner (closure), an adhesive label (labeling), and a foil overpouch (secondary container). The bottles were filled with simulating solvents (aqueous salt/acid mixture at pH 2.5, aqueous buffer at pH 9.5, and 1/1 v/v isopropanol/water), a label was affixed to the filled and capped bottles, the filled bottles were placed into the foil overpouch, and the filled and pouched units were stored either upright or inverted for up to 6 months at 40 °C. After storage, the leaching solutions were tested for leached substances using multiple complementary analytical techniques to address volatile, semi-volatile, and non-volatile organic and inorganic extractables as potential leachables.The leaching data generated supported several conclusions, including that (1) the extractables (leachables) profile revealed by a simulating leaching study can qualitatively be correlated with compositional information for materials of construction, (2) the chemical nature of both the extracting medium and the individual extractables (leachables) can markedly affect the resulting profile, and (3) while direct contact between a drug product and a system's material of construction may exacerbate the leaching of substances from that material by the drug product, direct contact is not a prerequisite for migration and leaching to occur.LAY ABSTRACT: The migration of container-related extractables from a model pharmaceutical container-closure system and into simulated drug product solutions was studied, focusing on circumstances relevant to parenteral and ophthalmic drug products. The model system was constructed specifically to address the migration of extractables from labels applied to the outside of the primary container. The study demonstrated that (1) the extractables that do migrate can be correlated to the composition of the materials used to construct the container-closure systems, (2) the extent of migration is affected by the chemical nature of the simulating solutions and the extractables themselves, and (3) even though labels may not be in direct contact with a contained solution, label-related extractables can accumulate as leachables in those solutions.


Subject(s)
Drug Contamination/prevention & control , Drug Packaging/standards , Models, Theoretical , Plastics/standards , Infusions, Parenteral/standards , Ophthalmic Solutions/administration & dosage , Ophthalmic Solutions/standards , Parenteral Nutrition/standards , Plastics/chemistry
2.
PDA J Pharm Sci Technol ; 67(5): 448-511, 2013.
Article in English | MEDLINE | ID: mdl-24084660

ABSTRACT

Polymeric and elastomeric materials are commonly encountered in medical devices and packaging systems used to manufacture, store, deliver, and/or administer drug products. Characterizing extractables from such materials is a necessary step in establishing their suitability for use in these applications. In this study, five individual materials representative of polymers and elastomers commonly used in packaging systems and devices were extracted under conditions and with solvents that are relevant to parenteral and ophthalmic drug products (PODPs). Extraction methods included elevated temperature sealed vessel extraction, sonication, refluxing, and Soxhlet extraction. Extraction solvents included a low-pH (pH = 2.5) salt mixture, a high-pH (pH = 9.5) phosphate buffer, a 1/1 isopropanol/water mixture, isopropanol, and hexane. The resulting extracts were chemically characterized via spectroscopic and chromatographic means to establish the metal/trace element and organic extractables profiles. Additionally, the test articles themselves were tested for volatile organic substances. The results of this testing established the extractables profiles of the test articles, which are reported herein. Trends in the extractables, and their estimated concentrations, as a function of the extraction and testing methodologies are considered in the context of the use of the test article in medical applications and with respect to establishing best demonstrated practices for extractables profiling of materials used in PODP-related packaging systems and devices. LAY ABSTRACT: Plastic and rubber materials are commonly encountered in medical devices and packaging/delivery systems for drug products. Characterizing the extractables from these materials is an important part of determining that they are suitable for use. In this study, five materials representative of plastics and rubbers used in packaging and medical devices were extracted by several means, and the extracts were analytically characterized to establish each material's profile of extracted organic compounds and trace element/metals. This information was utilized to make generalizations about the appropriateness of the test methods and the appropriate use of the test materials.


Subject(s)
Drug Contamination , Drug Packaging , Drug Delivery Systems , Materials Testing , Pharmaceutical Preparations/chemistry , Plastics/chemistry , Product Packaging , Rubber
3.
Pharm Res ; 25(4): 727-39, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18183477

ABSTRACT

The Product Quality Research Institute Leachables and Extractables Working Group includes pharmaceutical development scientists representing industry, government, and academia. The Working Group was created and constituted to address scientific and regulatory questions concerning the pharmaceutical development process for Orally Inhaled and Nasal Drug Products (OINDP) related to organic extractables and leachables. This effort has resulted in the creation of a detailed "Recommendation Document", which was submitted to the U.S. FDA for consideration in September 2006. The recommendations include proposed safety and analytical thresholds for leachables and extractables, as well as detailed "best practice" recommendations for various aspects of the OINDP pharmaceutical development process, including: materials selection for OINDP container closure system components, Controlled Extraction Studies, Leachables Studies, and Routine Extractables Testing. The Working Group's processes and the detailed and comprehensive recommendations that resulted from those processes, demonstrate that the Product Quality Research Institute collaborative process can result in consensus science-based and data driven recommendations that could have a positive effect on patient care. It is anticipated that the Working Group's recommendations will also contribute to the new "Quality by Design" pharmaceutical development paradigm. This commentary summarizes the best practice recommendations within the context of an overall pharmaceutical development process.


Subject(s)
Drug Contamination/prevention & control , Drug Packaging , Guidelines as Topic , Pharmaceutical Preparations/standards , Technology, Pharmaceutical/standards , Administration, Inhalation , Administration, Intranasal , Administration, Oral , Benchmarking , Consumer Product Safety , Gas Chromatography-Mass Spectrometry/standards , Humans , Pharmaceutical Preparations/administration & dosage , Quality Control , Technology, Pharmaceutical/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...