Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
1.
Cell Mol Gastroenterol Hepatol ; : 101390, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39128652

ABSTRACT

BACKGROUND & AIMS: Human sporadic colorectal cancer (CRC) results from a multistep pathway with sequential acquisition of specific genetic mutations in the colorectal epithelium. Modeling CRC in vivo is critical for understanding the tumor microenvironment. To accurately recapitulate human CRC pathogenesis, mouse models must include these multi-step genetic abnormalities. AIMS: Generate a sporadic CRC model that more closely mimics this multi-step process and use this model to study the role of a novel Let7 target PLAGL2 in CRC pathogenesis. METHODS: We generated a CRISPR/Cas9 somatic mutagenesis mouse model that is inducible and multiplexed for simultaneous inactivation of multiple genes involved in CRC pathogenesis. We used both a doxycycline-inducible transcriptional activator and a dox-inactivated transcriptional repressor to achieve tight, non-leaky expression of the Cas9 nickase. This mouse has transgenic expression of multiple guide RNAs to induce sporadic inactivation in the gut epithelium of four tumor suppressor genes commonly mutated in CRC, Apc, Pten, Smad4 and Trp53. These were crossed to Vil-LCL-PLAGL2 mice which have Cre-inducible overexpression of PLAGL2 in the gut epithelium. RESULTS: These mice exhibited random somatic mutations in all four targeted tumor suppressor genes, resulting in multiple adenomas and adenocarcinomas in the small bowel and colon. Crosses with Vil-LCL-PLAGL2 mice demonstrated that gut-specific PLAGL2 overexpression increased colon tumor growth. CONCLUSIONS: This conditional model represents a new CRISPR/Cas9-mediated mouse model of colorectal carcinogenesis. These mice can be used to investigate the role of novel, previously uncharacterized genes in CRC, in the context of multiple commonly mutated tumor suppressor genes and thus more closely mimic human CRC pathogenesis.

2.
Gastroenterol Clin North Am ; 53(3): 473-480, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39068008

ABSTRACT

In intestinal resection animal models of short bowel syndrome (SBS), the remaining epithelium mounts a robust adaptive response characterized by early stem cell expansion and increased crypt depth, villus height and nutrient absorption. In humans the adaptive response is critical for resumption of oral nutrition, yet it may be variable, and underlying mechanisms are much less well understood. Current knowledge relating to the role of stem and mesenchymal niche cells in the adaptive response in animal models and in human SBS are addressed in this review.


Subject(s)
Intestinal Mucosa , Short Bowel Syndrome , Stem Cell Niche , Short Bowel Syndrome/physiopathology , Short Bowel Syndrome/pathology , Humans , Stem Cell Niche/physiology , Animals , Intestinal Mucosa/pathology , Disease Models, Animal , Stem Cells/pathology
3.
Gastroenterology ; 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39084267

ABSTRACT

BACKGROUND & AIMS: The pathophysiology of Crohn's-like disease of the ileal pouch-anal anastomosis (CDP) in patients with a history of ulcerative colitis (UC) is unknown. We examined mucosal cells from patients with and without CDP using single cell analyses. METHODS: Endoscopic samples were collected from pouch body and pre-pouch ileum (pouch/ileum) of 50 patients with an IPAA. Single-cell RNA sequencing (scRNA-seq) was performed on pouch/ileal tissues of patients with normal pouch/ileum and CDP. Mass cytometry was performed on mucosal immune cells from patients with UC with normal pouch/ileum, CDP, pouchitis, as well as those with familial adenomatous polyposis (FAP) after pouch formation. Findings were independently validated using immunohistochemistry. RESULTS: The cell populations/states in pouch body differed from those in pre-pouch ileum, likely secondary to increased microbial burden. Compared to FAP pouch, UC pouch was enriched in colitogenic immune cells even without inflammation. CDP was characterized by increases in Th17 cells, inflammatory fibroblasts, inflammatory monocytes, TREM1+ monocytes, clonal expansion of effector T cells, and overexpression of Th17-inducing cytokine genes such as IL23, IL1B and IL6 by mononuclear phagocytes (MNPs). Ligand-receptor analysis further revealed a stromal-MNP-lymphocyte circuit in CDP. Integrated analysis showed that upregulated immune mediators in CDP were similar to those in CD and pouchitis, but not UC. Additionally, CDP pouch/ileum exhibited heightened endoplasmic reticulum (ER) stress across all major cell compartments. CONCLUSIONS: CDP likely represents a distinct entity of inflammatory bowel disease with heightened ER stress in both immune and non-immune cells, which may become a novel diagnostic biomarker and therapeutic target for CDP.

5.
J Surg Res ; 293: 433-442, 2024 01.
Article in English | MEDLINE | ID: mdl-37812877

ABSTRACT

INTRODUCTION: Massive intestinal loss resulting in short bowel syndrome has been linked to intestinal failure associated liver disease. Efforts to elucidate the driving force behind the observed hepatic injury have identified inflammatory mediators, alterations in the microbiome, extent of structural and functional intestinal adaptation, and toxic shifts in the bile acid pool. In the present study, we posit that ileocecal resection interrupts the delivery of these hepatotoxic substances to the liver by physically disrupting the enterohepatic circulation, thereby shielding the liver from exposure to the aforementioned noxious stimuli. METHODS: Mice underwent sham, 50% proximal, or 50% distal small bowel resection (SBR), with or without tauroursodeoxycolic acid supplementation. Enterohepatic signaling and nonsense-mediated ribonucleic acid (RNA) decay were evaluated and correlated with hepatic injury. RESULTS: When compared to 50% proximal SBR, mice that underwent ileocecal resection exhibited reduced hepatic oxidative stress and exhibited a more physiological bile acid profile with increased de novo bile acid synthesis, enhanced colonic bile acid signaling, and reduced hepatic proliferation. Distal intestinal resection promoted an adaptive response including via the nonsense-mediated RNA decay pathway to satisfactorily process injurious messenger RNA and successfully maintain homeostasis. By contrast, this adaptive response was not observed in the proximal SBR group and hepatic injury persisted. CONCLUSIONS: In summary, interruption of enterohepatic circulation via ileocecal resection abrogates the liver's exposure to toxic and inflammatory mediators while promoting physiological adaptations in bile acid metabolism and maintaining existing homeostatic pathways.


Subject(s)
Liver Diseases , RNA , Mice , Animals , RNA/metabolism , Liver/surgery , Liver/metabolism , Liver Diseases/metabolism , Bile Acids and Salts/metabolism , Inflammation Mediators/metabolism
6.
Am J Physiol Gastrointest Liver Physiol ; 325(2): G196-G211, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37310750

ABSTRACT

Colorectal cancer (CRC) tumorigenesis and progression are linked to common oncogenic mutations, especially in the tumor suppressor APC, whose loss triggers the deregulation of TCF4/ß-Catenin activity. CRC tumorigenesis is also driven by multiple epimutational modifiers such as transcriptional regulators. We describe the common (and near-universal) activation of the zinc finger transcription factor and Let-7 target PLAGL2 in CRC and find that it is a key driver of intestinal epithelial transformation. PLAGL2 drives proliferation, cell cycle progression, and anchorage-independent growth in CRC cell lines and nontransformed intestinal cells. Investigating effects of PLAGL2 on downstream pathways revealed very modest effects on canonical Wnt signaling. Alternatively, we find pronounced effects on the direct PLAGL2 target genes IGF2, a fetal growth factor, and ASCL2, an intestinal stem cell-specific bHLH transcription factor. Inactivation of PLAGL2 in CRC cell lines has pronounced effects on ASCL2 reporter activity. Furthermore, ASCL2 expression can partially rescue deficits of proliferation and cell cycle progression caused by depletion of PLAGL2 in CRC cell lines. Thus, the oncogenic effects of PLAGL2 appear to be mediated via core stem cell and onco-fetal pathways, with minimal effects on downstream Wnt signaling.NEW & NOTEWORTHY A Let-7 target called PLAGL2 drives oncogenic transformation via Wnt-independent pathways. This work illustrates the robust effects of this zinc finger transcription factor in colorectal cancer (CRC) cell lines and nontransformed intestinal epithelium, with effects mediated, in part, via the direct target genes ASCL2 and IGF2. This has implications for the role of PLAGL2 in activation of onco-fetal and onco-stem cell pathways, contributing to immature and highly proliferative phenotypes in CRC.


Subject(s)
Colorectal Neoplasms , Humans , Colorectal Neoplasms/metabolism , Cell Line, Tumor , Transcription Factors/genetics , Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , beta Catenin/metabolism , Cell Transformation, Neoplastic/genetics , Wnt Signaling Pathway , Carcinogenesis/genetics , Gene Expression Regulation, Neoplastic , Cell Proliferation/genetics , DNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics
7.
JCI Insight ; 8(9)2023 05 08.
Article in English | MEDLINE | ID: mdl-37014710

ABSTRACT

RNA-binding protein 47 (RBM47) is required for embryonic endoderm development, but a role in adult intestine is unknown. We studied intestine-specific Rbm47-knockout mice (Rbm47-IKO) following intestinal injury and made crosses into ApcMin/+ mice to examine alterations in intestinal proliferation, response to injury, and tumorigenesis. We also interrogated human colorectal polyps and colon carcinoma tissue. Rbm47-IKO mice exhibited increased proliferation and abnormal villus morphology and cellularity, with corresponding changes in Rbm47-IKO organoids. Rbm47-IKO mice adapted to radiation injury and were protected against chemical-induced colitis, with Rbm47-IKO intestine showing upregulation of antioxidant and Wnt signaling pathways as well as stem cell and developmental genes. Furthermore, Rbm47-IKO mice were protected against colitis-associated cancer. By contrast, aged Rbm47-IKO mice developed spontaneous polyposis, and Rbm47-IKO ApcMin/+ mice manifested an increased intestinal polyp burden. RBM47 mRNA was decreased in human colorectal cancer versus paired normal tissue, along with alternative splicing of tight junction protein 1 mRNA. Public databases revealed stage-specific reduction in RBM47 expression in colorectal cancer associated independently with decreased overall survival. These findings implicate RBM47 as a cell-intrinsic modifier of intestinal growth, inflammatory, and tumorigenic pathways.


Subject(s)
Colitis , Colonic Neoplasms , Adult , Mice , Humans , Animals , Aged , Mice, Knockout , Colitis/chemically induced , Colitis/genetics , Colonic Neoplasms/genetics , Carcinogenesis/genetics , Cell Proliferation , RNA, Messenger/genetics , Oxidative Stress , RNA-Binding Proteins/genetics
8.
J Pediatr Surg ; 58(6): 1074-1078, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36914459

ABSTRACT

BACKGROUND: Massive small bowel resection (SBR) is associated with liver injury and fibrosis. Efforts to elucidate the driving force behind hepatic injury have identified multiple factors, including the generation of toxic bile acid metabolites. METHODS: Sham, 50% proximal, and 50% distal SBR were carried out in C57BL/6 mice to determine the effect of jejunal (proximal SBR) versus ileocecal resection (distal SBR) on bile acid metabolism and liver injury. Tissues were harvested at 2 and 10-week postoperative timepoints. RESULTS: When compared with 50% proximal SBR, mice that underwent distal SBR exhibited less hepatic oxidative stress as verified by decreased mRNA expression of tumor necrosis factor-α (TNFα, p ≤ 0.0001), nicotinamide adenine dinucleotide phosphate oxidase (NOX, p ≤ 0.0001), and glutathione synthetase (GSS, p ≤ 0.05). Distal SBR mice also exhibited a more hydrophilic bile acid profile with reduced abundance of insoluble bile acids (cholic acid (CA), taurodeoxycholic acid (TCA), and taurolithocholic acid (TLCA)), and increased abundance of soluble bile acids (tauroursodeoxycholic acid (TUDCA)). In contrast with proximal SBR, ileocecal resection alters enterohepatic circulation leading to reduced oxidative stress and promotes physiological bile acid metabolism. CONCLUSION: These findings challenge the notion that preservation of the ileocecal region is beneficial in patients with short bowel syndrome. Administration of selected bile acids may present potential therapy to mitigate resection-associated liver injury. LEVEL OF EVIDENCE: III-Case-Control Study.


Subject(s)
Bile Acids and Salts , Liver , Mice , Animals , Case-Control Studies , Mice, Inbred C57BL , Liver/surgery , Liver/metabolism , Enterohepatic Circulation
9.
J Pediatr Surg ; 58(6): 1170-1177, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36922278

ABSTRACT

BACKGROUND: Resection-associated liver steatosis, injury, and fibrosis is a devastating complication associated with massive small bowel resection (SBR). Peroxisome proliferator-activated receptor-alpha (PPARα) is a key regulator of intestinal lipid transport and metabolism whose expression is selectively increased after SBR. Here we asked if attenuating intestinal PPARα signaling would prevent steatosis and liver injury after SBR. METHODS: Pparα was deleted selectively in adult mouse intestine using a tamoxifen-inducible Cre-LoxP breeding schema. Mice underwent 50% SBR. At 10 weeks post-operatively, metabolic phenotyping, body composition analysis, in vivo assessment of lipid absorption and intestinal permeability, and assessment of adaptation and liver injury was completed. RESULTS: Pparα intestinal knockout and littermate control mice were phenotypically similar in terms of weight trends and body composition after SBR. All mice demonstrated intestinal adaptation with increased villus height and crypt depth; however, Pparα intestinal knockout mice exhibited decreased villus growth at 10 weeks compared to littermate controls. Liver injury and fibrosis were similar between groups as assessed by serum AST and ALT levels, Sirius Red staining, and hepatic expression of Col1a1 and Acta2. CONCLUSIONS: Inducible intestinal deletion of Pparα influences structural adaptation but does not mitigate liver injury after SBR. These findings suggest that enterocyte PPARα signaling in adult mice is dispensable for resection-induced liver injury. The results are critical for understanding the contribution of intestinal lipid metabolic signaling pathways to the pathogenesis of hepatic injury associated with short bowel syndrome.


Subject(s)
Intestine, Small , PPAR alpha , Animals , Mice , Adaptation, Physiological , Intestine, Small/surgery , Lipids , Mice, Inbred C57BL , Mice, Knockout , PPAR alpha/genetics , PPAR alpha/metabolism
11.
Am J Physiol Gastrointest Liver Physiol ; 323(3): G165-G176, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35727920

ABSTRACT

The unfolded protein response (UPR) is a complex adaptive signaling pathway activated by the accumulation of misfolded proteins in the endoplasmic reticulum (ER). ER stress (ERS) triggers a cascade of responses that converge upon C/EBP homologous protein (CHOP) to drive inflammation and apoptosis. Herein, we sought to determine whether liver injury and fibrosis after small bowel resection (SBR) were mediated by a maladaptive hepatic ERS/UPR. C57BL/6 mice underwent 50% proximal SBR or sham operation. Markers of liver injury and UPR/ERS pathways were analyzed. These were compared with experimental groups including dietary fat manipulation, tauroursodeoxycholic acid (TUDCA) treatment, distal SBR, and global CHOP knockout (KO). At 10 wk, proximal SBR had elevated alanine aminotransferase/aspartate aminotransferase (ALT/AST) (P < 0.005) and greater hepatic tumor necrosis factor-α (TNFα) (P = 0.001) and collagen type 1 α1 (COL1A1) (P = 0.02) than shams. SBR livers had increased CHOP and p-eIF2α, but were absent in activating transcription factor 4 (ATF4) protein expression. Low-fat diet (LFD), TUDCA, and distal SBR groups had decreased liver enzymes, inflammation, and fibrosis (P < 0.05). Importantly, they demonstrated reversal of hepatic UPR with diminished CHOP and robust ATF4 signal. CHOP KO-SBR had decreased ALT but not AST compared with wild-type (WT)-SBR (P = 0.01, P = 0.12). There were no differences in TNFα and COL1A1 (P = 0.09, P = 0.50). SBR-induced liver injury, fibrosis is associated with a novel hepatic UPR/ERS response characterized by increased CHOP and decreased ATF4. LFD, TUDCA, and ileocecal resection rescued the hepatic phenotype and reversed the UPR pattern. Global CHOP KO only partially attenuated liver injury. This underscores the significance of disruptions to the gut/liver axis after SBR and potentiates targets to mitigate the progression of intestinal failure-associated liver disease.NEW & NOTEWORTHY The unfolded protein response (UPR) is a complex signaling cascade that converges upon C/EBP-homologous protein (CHOP). Under conditions of chronic cellular stress, the UPR shifts from homeostatic to proapoptotic leading to inflammation and cell death. Here, we provide evidence that small bowel resection-induced liver injury and fibrosis are mediated by a maladaptive hepatic UPR. Low-fat diet, TUDCA treatment, and ileocecal resection rescued the hepatic phenotype and reversed the UPR pattern.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Tumor Necrosis Factor-alpha , Animals , Apoptosis/genetics , Endoplasmic Reticulum Stress , Fibrosis , Inflammation/metabolism , Liver Cirrhosis , Mice , Mice, Inbred C57BL , Transcription Factor CHOP/genetics , Transcription Factor CHOP/metabolism , Tumor Necrosis Factor-alpha/metabolism , Unfolded Protein Response
12.
Am J Physiol Gastrointest Liver Physiol ; 322(1): G154-G168, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34816756

ABSTRACT

Loss of functional small bowel surface area causes short bowel syndrome (SBS), intestinal failure, and parenteral nutrition (PN) dependence. The gut adaptive response following resection may be difficult to predict, and it may take up to 2 yr to determine which patients will wean from PN. Here, we examined features of gut microbiota and bile acid (BA) metabolism in determining adaptation and ability to wean from PN. Stool and sera were collected from healthy controls and from patients with SBS (n = 52) with ileostomy, jejunostomy, ileocolonic, and jejunocolonic anastomoses fed with PN plus enteral nutrition or who were exclusively enterally fed. We undertook 16S rRNA gene sequencing, BA profiling, and 7α-hydroxy-4-cholesten-3-one (C4) quantitation with LC-MS/MS and serum amino acid analyses. Patients with SBS exhibited altered gut microbiota with reduced gut microbial diversity compared with healthy controls. We observed differences in the microbiomes of patients with SBS with ileostomy versus jejunostomy, jejunocolonic versus ileocolonic anastomoses, and PN dependence compared with those who weaned from PN. Stool and serum BA composition and C4 concentrations were also altered in patients with SBS, reflecting adaptive changes in enterohepatic BA cycling. Stools from patients who were weaned from PN were enriched in secondary BAs including deoxycholic acid and lithocholic aicd. Shifts in gut microbiota and BA metabolites may generate a favorable luminal environment in select patients with SBS, promoting the ability to wean from PN. Proadaptive microbial species and select BA may provide novel targets for patient-specific therapies for SBS.NEW & NOTEWORTHY Loss of intestinal surface area causes short bowel syndrome, intestinal failure, and parenteral nutrition dependence. We analyzed the gut microbiota and bile acid metabolome of a large cohort of short bowel syndrome adult patients with different postsurgical anatomies. We report a novel analysis of the microbiome of patients with ileostomy and jejunostomy. Enrichment of specific microbial and bile acid species may be associated with the ability to wean from parenteral nutrition.


Subject(s)
Bile Acids and Salts/metabolism , Feces/microbiology , RNA, Ribosomal, 16S/metabolism , Short Bowel Syndrome/metabolism , Adaptation, Physiological/physiology , Chromatography, Liquid , Gastrointestinal Microbiome/physiology , Humans , Intestine, Small/metabolism , Metabolome/physiology , Microbiota/physiology
13.
Acad Med ; 97(4): 497-502, 2022 04 01.
Article in English | MEDLINE | ID: mdl-34495889

ABSTRACT

As the nation seeks to recruit and retain physician-scientists, gaps remain in understanding and addressing mitigatable challenges to the success of faculty from underrepresented minority (URM) backgrounds. The Doris Duke Charitable Foundation Fund to Retain Clinical Scientists program, implemented in 2015 at 10 academic medical centers in the United States, seeks to retain physician-scientists at risk of leaving science because of periods of extraordinary family caregiving needs, hardships that URM faculty-especially those who identify as female-are more likely to experience. At the annual Fund to Retain Clinical Scientists program directors conference in 2018, program directors-21% of whom identify as URM individuals and 13% as male-addressed issues that affect URM physician-scientists in particular. Key issues that threaten the retention of URM physician-scientists were identified through focused literature reviews; institutional environmental scans; and structured small- and large-group discussions with program directors, staff, and participants. These issues include bias and discrimination, personal wealth differential, the minority tax (i.e., service burdens placed on URM faculty who represent URM perspectives on committees and at conferences), lack of mentorship training, intersectionality and isolation, concerns about confirming stereotypes, and institutional-level factors. The authors present recommendations for how to create an environment in which URM physician-scientists can expect equitable opportunities to thrive, as institutions demonstrate proactive allyship and remove structural barriers to success. Recommendations include providing universal training to reduce interpersonal bias and discrimination, addressing the consequences of the personal wealth gap through financial counseling and benefits, measuring the service faculty members provide to the institution as advocates for URM faculty issues and compensating them appropriately, supporting URM faculty who wish to engage in national leadership programs, and sustaining institutional policies that address structural and interpersonal barriers to inclusive excellence.


Subject(s)
Mentoring , Physicians , Faculty, Medical , Female , Humans , Male , Mentors , Minority Groups/education , United States
15.
Gut Microbes ; 13(1): 1940792, 2021.
Article in English | MEDLINE | ID: mdl-34264786

ABSTRACT

Surgical removal of the intestine, lifesaving in catastrophic gastrointestinal disorders of infancy, can result in a form of intestinal failure known as short bowel syndrome (SBS). Bloodstream infections (BSIs) are a major challenge in pediatric SBS management. BSIs require frequent antibiotic therapy, with ill-defined consequences for the gut microbiome and childhood health. Here, we combine serial stool collection, shotgun metagenomic sequencing, multivariate statistics and genome-resolved strain-tracking in a cohort of 19 patients with surgically-induced SBS to show that antibiotic-driven intestinal dysbiosis in SBS enriches for persistent intestinal colonization with BSI causative pathogens in SBS. Comparing the gut microbiome composition of SBS patients over the first 4 years of life to 19 age-matched term and 18 preterm controls, we find that SBS gut microbiota diversity and composition was persistently altered compared to controls. Commensals including Ruminococcus, Bifidobacterium, Eubacterium, and Clostridium species were depleted in SBS, while pathobionts (Enterococcus) were enriched. Integrating clinical covariates with gut microbiome composition in pediatric SBS, we identified dietary and antibiotic exposures as the main drivers of these alterations. Moreover, antibiotic resistance genes, specifically broad-spectrum efflux pumps, were at a higher abundance in SBS, while putatively beneficial microbiota functions, including amino acid and vitamin biosynthesis, were depleted. Moreover, using strain-tracking we found that the SBS gut microbiome harbors BSI causing pathogens, which can persist intestinally throughout the first years of life. The association between antibiotic-driven gut dysbiosis and enrichment of intestinal pathobionts isolated from BSI suggests that antibiotic treatment may predispose SBS patients to infection. Persistence of pathobionts and depletion of beneficial microbiota and functionalities in SBS highlights the need for microbiota-targeted interventions to prevent infection and facilitate intestinal adaptation.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Dysbiosis/drug therapy , Dysbiosis/etiology , Gastrointestinal Microbiome/drug effects , Sepsis/drug therapy , Sepsis/etiology , Short Bowel Syndrome/complications , Adolescent , Child , Child, Preschool , Cohort Studies , Dysbiosis/microbiology , Female , Humans , Male , Missouri , Short Bowel Syndrome/microbiology
16.
J Clin Invest ; 131(1)2021 01 04.
Article in English | MEDLINE | ID: mdl-33445170

ABSTRACT

The RNA-binding protein Apobec1 complementation factor (A1CF) regulates posttranscriptional ApoB mRNA editing, but the range of RNA targets and the long-term effect of altered A1CF expression on liver function are unknown. Here we studied hepatocyte-specific A1cf-transgenic (A1cf+/Tg), A1cf+/Tg Apobec1-/-, and A1cf-/- mice fed chow or high-fat/high-fructose diets using RNA-Seq, RNA CLIP-Seq, and tissue microarrays from human hepatocellular cancer (HCC). A1cf+/Tg mice exhibited increased hepatic proliferation and steatosis, with increased lipogenic gene expression (Mogat1, Mogat2, Cidea, Cd36) associated with shifts in polysomal RNA distribution. Aged A1cf+/Tg mice developed spontaneous fibrosis, dysplasia, and HCC, and this development was accelerated on a high-fat/high-fructose diet and was independent of Apobec1. RNA-Seq revealed increased expression of mRNAs involved in oxidative stress (Gstm3, Gpx3, Cbr3), inflammatory response (Il19, Cxcl14, Tnfα, Ly6c), extracellular matrix organization (Mmp2, Col1a1, Col4a1), and proliferation (Kif20a, Mcm2, Mcm4, Mcm6), and a subset of mRNAs (including Sox4, Sox9, Cdh1) were identified in RNA CLIP-Seq. Increased A1CF expression in human HCC correlated with advanced fibrosis and with reduced survival in a subset with nonalcoholic fatty liver disease. In conclusion, we show that hepatic A1CF overexpression selectively alters polysomal distribution and mRNA expression, promoting lipogenic, proliferative, and inflammatory pathways leading to HCC.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Fatty Liver/metabolism , Liver Cirrhosis/metabolism , Liver Neoplasms/metabolism , Neoplasm Proteins/metabolism , RNA-Binding Proteins/metabolism , Animals , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Fatty Liver/genetics , Fatty Liver/pathology , Liver Cirrhosis/genetics , Liver Cirrhosis/pathology , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Mice , Mice, Knockout , Neoplasm Proteins/genetics , RNA-Binding Proteins/genetics
17.
JCI Insight ; 5(23)2020 12 03.
Article in English | MEDLINE | ID: mdl-33141758

ABSTRACT

Loss of functional small bowel surface area following surgical resection for disorders such as Crohn's disease, intestinal ischemic injury, radiation enteritis, and in children, necrotizing enterocolitis, atresia, and gastroschisis, may result in short bowel syndrome, with attendant high morbidity, mortality, and health care costs in the United States. Following resection, the remaining small bowel epithelium mounts an adaptive response, resulting in increased crypt cell proliferation, increased villus height, increased crypt depth, and enhanced nutrient and electrolyte absorption. Although these morphologic and functional changes are well described in animal models, the adaptive response in humans is less well understood. Clinically the response is unpredictable and often inadequate. Here we address the hypotheses that human intestinal stem cell populations are expanded and that the stem cell niche is regulated following massive gut resection in short bowel syndrome (SBS). We use intestinal enteroid cultures from patients with SBS to show that the magnitude and phenotype of the adaptive stem cell response are both regulated by stromal niche cells, including intestinal subepithelial myofibroblasts, which are activated by intestinal resection to enhance epithelial stem and proliferative cell responses. Our data suggest that myofibroblast regulation of bone morphogenetic protein signaling pathways plays a role in the gut adaptive response after resection.


Subject(s)
Adult Stem Cells/metabolism , Intestinal Mucosa/metabolism , Short Bowel Syndrome/physiopathology , Adult Stem Cells/physiology , Aged , Crohn Disease/metabolism , Enteritis/metabolism , Female , Humans , Intestinal Mucosa/growth & development , Intestines , Male , Middle Aged , Myofibroblasts/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Short Bowel Syndrome/metabolism , Signal Transduction
18.
Dev Cell ; 55(2): 178-194.e7, 2020 10 26.
Article in English | MEDLINE | ID: mdl-32768422

ABSTRACT

Differentiated cells can re-enter the cell cycle to repair tissue damage via a series of discrete morphological and molecular stages coordinated by the cellular energetics regulator mTORC1. We previously proposed the term "paligenosis" to describe this conserved cellular regeneration program. Here, we detail a molecular network regulating mTORC1 during paligenosis in both mouse pancreatic acinar and gastric chief cells. DDIT4 initially suppresses mTORC1 to induce autodegradation of differentiated cell components and damaged organelles. Later in paligenosis, IFRD1 suppresses p53 accumulation. Ifrd1-/- cells do not complete paligenosis because persistent p53 prevents mTORC1 reactivation and cell proliferation. Ddit4-/- cells never suppress mTORC1 and bypass the IFRD1 checkpoint on proliferation. Previous reports and our current data implicate DDIT4/IFRD1 in governing paligenosis in multiple organs and species. Thus, we propose that an evolutionarily conserved, dedicated molecular network has evolved to allow differentiated cells to re-enter the cell cycle (i.e., undergo paligenosis) after tissue injury. VIDEO ABSTRACT.


Subject(s)
Cell Cycle/physiology , Cell Differentiation/physiology , Cell Division/physiology , Cell Proliferation/physiology , Animals , Cell Transdifferentiation/physiology , Licensure , Mechanistic Target of Rapamycin Complex 1/metabolism
19.
Sci Rep ; 10(1): 3842, 2020 03 02.
Article in English | MEDLINE | ID: mdl-32123209

ABSTRACT

The development and physiologic role of small intestine (SI) vasculature is poorly studied. This is partly due to a lack of targetable, organ-specific markers for in vivo studies of two critical tissue components: endothelium and stroma. This challenge is exacerbated by limitations of traditional cell culture techniques, which fail to recapitulate mechanobiologic stimuli known to affect vessel development. Here, we construct and characterize a 3D in vitro microfluidic model that supports the growth of patient-derived intestinal subepithelial myofibroblasts (ISEMFs) and endothelial cells (ECs) into perfused capillary networks. We report how ISEMF and EC-derived vasculature responds to physiologic parameters such as oxygen tension, cell density, growth factors, and pharmacotherapy with an antineoplastic agent (Erlotinib). Finally, we demonstrate effects of ISEMF and EC co-culture on patient-derived human intestinal epithelial cells (HIECs), and incorporate perfused vasculature into a gut-on-a-chip (GOC) model that includes HIECs. Overall, we demonstrate that ISEMFs possess angiogenic properties as evidenced by their ability to reliably, reproducibly, and quantifiably facilitate development of perfused vasculature in a microfluidic system. We furthermore demonstrate the feasibility of including perfused vasculature, including ISEMFs, as critical components of a novel, patient-derived, GOC system with translational relevance as a platform for precision and personalized medicine research.


Subject(s)
Capillaries/growth & development , Coculture Techniques/instrumentation , Intestine, Small/cytology , Lab-On-A-Chip Devices , Myofibroblasts/cytology , Humans , Myofibroblasts/metabolism , Oxygen/metabolism , Perfusion
20.
Dig Dis Sci ; 65(11): 3271-3279, 2020 11.
Article in English | MEDLINE | ID: mdl-31907775

ABSTRACT

BACKGROUND: Few studies have examined the metabolic consequences of short bowel syndrome (SBS) and its effects on body composition in adults. We hypothesized that body composition of SBS patients is altered compared to a normal age-, race-, and sex-matched population, regardless of parenteral nutrition (PN) dependence. AIM: To compare the body composition of adult patients with SBS to age-, sex-, and race-matched healthy controls. METHODS: Twenty patients with SBS underwent body composition analysis using the GE Lunar iDXA scanner. Patients were age-, sex-, and race-matched to controls from the National Health and Nutrition Examination Survey (1999-2004). Mean differences in body mass index, fat-free mass, fat mass, percent body fat, visceral adipose tissue mass and volume, and bone mineral density were measured. Statistical analysis was performed using SAS 9.4 software. RESULTS: Fifty-five percent of subjects had a history of PN use, and 30% were current PN users. Mean percent body fat for SBS patients was 35.1% compared to 30.9% for healthy controls (p = 0.043). Fat-free mass was reduced in SBS (p = 0.007). Patients with reduced bone mass had a trend toward significantly more years of PN exposure compared to those with normal bone mass (p = 0.094), and a trend toward older age (p = 0.075). CONCLUSIONS: SBS is associated with increased percent body fat and reduced fat-free mass, suggesting that improved dietary and therapeutic interventions are needed to restore normal metabolic indices and avoid risk of metabolic syndrome in SBS patients.


Subject(s)
Adiposity , Body Composition , Body Mass Index , Short Bowel Syndrome/metabolism , Absorptiometry, Photon , Case-Control Studies , Female , Humans , Male , Middle Aged , Nutrition Surveys
SELECTION OF CITATIONS
SEARCH DETAIL