Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 16(24)2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38138748

ABSTRACT

The present work deals with the production of cellulosic microfibers (CMFs) from coffee pulp. The experimental development corresponds to an experimental design of three variables (concentration, temperature and time) of alkaline treatment for delignification, finding that concentration, temperature and time were the most representative variables. Higher delignification was achieved by bleaching cellulosic fibers, followed by acid hydrolysis, thus producing cellulosic fibers with an average diameter of 5.2 µm, which was confirmed using scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDS). An X-ray diffraction (XRD) analysis revealed, via the crystallinity index, the presence of Type I cellulose and removal of lignocellulosic compounds through chemical treatments. The proximate chemical analysis (PChA) of coffee pulp helped to identify 17% of the crude fiber corresponding to the plant cell wall consisting of lignocellulosic compounds. The initial cellulose content of 26.06% increased gradually to 48.74% with the alkaline treatment, to 57.5% with bleaching, and to 64.7% with acid hydrolysis. These results attested to the rich cellulosic content in the coffee pulp.

2.
Environ Res ; 231(Pt 3): 116094, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37201700

ABSTRACT

Mesostructured PbO2/TiO2 materials were synthesized to perform electrocatalysis (as electrooxidation, EO) and photoelectrocatalysis for removing diclofenac (DCF), 15 ppm concentration in 0.1 M NaSO4 solutions, at different pH conditions (3.0, 6.0 and 9.0) by applying 30 mA cm-2. Titania nanotubes (TiO2NTs)-based materials were prepared to synthetize with a massive PbO2 deposit on this support to obtain TiO2NTs/PbO2 and a TiO2NTs:PbO2 material consisting in a dispersed PbO2 deposit on TiO2-NTs that allowed the formation of a heterostructured surface of combined composition (TiO2 and PbO2). Organics removal (DCF and byproducts) was monitored through UV-vis spectrophotometry and high-performance liquid chromatography (HPLC) during degradation tests. TiO2NTs/PbO2 electrode was tested in both processes, removing DCF at neutral and alkaline solution conditions in EO while an unimportant photoactivity was registered at this material. Conversely, TiO2NTs:PbO2 was used as electrocatalytic material in EO experiments, achieving more than 50% of DCF removal at pH 6.0 by applying 30 mA cm-2. Also, for first time, the synergic effect was investigated when it was exposed to UV irradiation in photoelectrocatalytic experiments, enhancing its efficacy (⁓more than 20%) to remove DCF from a solution with 15 ppm over performance removals achieved (56%) when EO was applied under similar conditions. Chemical Oxygen Demand (COD) analyses showed that significantly higher DCF degradation is reached under photoelectrocatalysis, since COD values decrease a 76% against a 42% decrease achieved with electrocatalysis. Scavenging experiments showed a significant participation on the pharmaceutical oxidation process through the generation of photoholes (h+), hydroxyl radicals and sulfate-based oxidants.


Subject(s)
Nanotubes , Water Pollutants, Chemical , Water , Diclofenac , Lead , Oxides/chemistry , Titanium/chemistry , Oxidation-Reduction , Nanotubes/chemistry , Water Pollutants, Chemical/analysis
3.
Polymers (Basel) ; 14(10)2022 May 17.
Article in English | MEDLINE | ID: mdl-35631932

ABSTRACT

Hass avocadoes are one of the most popular fruits consumed worldwide because of their nutritional and nutraceutical content. Nevertheless, these fruits are susceptible to phytopathogen attacks that decrease fruit quality during the postharvest period. Herein we present the results of the in situ fungistatic activity of four hybrid films (FT1−FT4) manufactured with chitosan and different concentrations of the essential oil of thyme (TvEO). The films were evaluated as biodegradable materials to prevent fruit decay triggered by Clonostachys rosea which is considered an emergent phytopathogen of this crop. The in situ fungistatic strength, spectroscopic properties (FT-IR), optical features (transmittance/opacity), and consistency obtained by microscopic analysis (SEM), indicated that the films FT3 and FT4 possessed the best physicochemical properties to protect Hass avocadoes against the soft rot produced by C. rosea. Avocadoes treated with the films FT3 and FT4 significantly (p < 0.01) conserved fruit firmness and nutritional composition (protein, fat, fiber, and reducing sugars) as well as the nutraceutical content (oleic, palmitoleic, linoleic, and palmitic acids) of infected avocados for 21 days. Our results validate the potential use of the films FT3 and FT4 to prevent the soft rot caused by C. rosea and to improve the shelf life of Hass avocadoes.

4.
Microsc Res Tech ; 85(5): 1956-1963, 2022 May.
Article in English | MEDLINE | ID: mdl-35005814

ABSTRACT

In vitro models are very useful in dentistry, especially to evaluate preventive methods against dental caries. Although they have been used for more than 30 years, specific demineralization models have not been established for primary enamel, which is more prone to demineralization than permanent enamel. This study evaluates porosity changes in primary enamel surface after a demineralization model through a scientifically validated analytical tool. Nine healthy human anterior primary teeth extracted for therapeutic reasons were included in this study, previous informed consent. The samples were randomly assigned to three groups n = 3: G1_2D, G2_4D, and G3_7D. Scanning electron microscopy (SEM) images at ×200 and ×1000 were taken during two stages: before demineralization (BD) and after demineralization (AD). Morphological characterization was observed at ×1000, while porosity (pore count and perimeter) was analyzed by the ImageJ program, using ×200 SEM images previously converted. Several statistical analyses were used to determine differences (p ≤ .05). Morphological characterization AD revealed new pits and cracks on the enamel surface in G1_2D and G2_4D groups. Localized eroded enamel areas were observed in G3_7D. Pore count of enamel surface BD ranged from 64.26 ± 37.62 to 97.93 ± 34.25 and AD ranged from 150.06 ± 64.86 to 256 ± 58.14. AD, G_4D exhibited a decrease in pore perimeter contrary to G_2D and G_7D. Significant differences were observed. Finally, morphological changes were more evident as days of demineralization increased; 7 days of immersion could be employed as an enamel erosive model. The pore count increased after the demineralization model, BD pores perimeter was heterogeneous, and AD varied according to the immersion period. Morphological changes were more evident as days of demineralization increased. Seven days of immersion could be employed as an enamel erosive model. The initial porosity seems to be a determining factor for the final porousness. The pore perimeter of the primary enamel varied according to the immersion period on the demineralization model.


Subject(s)
Dental Caries , Tooth Demineralization , Dental Enamel , Humans , Microscopy, Electron, Scanning , Porosity , Tooth Demineralization/prevention & control
5.
Polymers (Basel) ; 13(10)2021 May 19.
Article in English | MEDLINE | ID: mdl-34069677

ABSTRACT

The development of organic-inorganic hybrid materials deserves special interest for bone tissue engineering applications, where materials must have properties that induce the survival and activation of cells derived from the mesenchyme. In this work, four bio-nanocomposites based on cellulose and variable content of chitosan, from 15 to 50 w% based on cellulose, with nanohydroxyapatite and ß-Glycerophosphate as cross-linking agent were synthesized by simplified and low-energy-demanding solvent exchange method to determine the best ratio of chitosan to cellulose matrix. This study analyzes the metabolic activity and survival of human dermal fibroblast cells cultivated in four bio-nanocomposites based on cellulose and the variable content of chitosan. The biocompatibility was tested by the in vitro cytotoxicity assays Live/Dead and PrestoBlue. In addition, the composites were characterized by FTIR, XRD and SEM. The results have shown that the vibration bands of ß-Glycerophosphate have prevailed over the other components bands, while new diffraction planes have emerged from the interaction between the cross-linking agent and the biopolymers. The bio-nanocomposite micrographs have shown no surface porosity as purposely designed. On the other hand, cell death and detachment were observed when the composites of 1 and 0.1 w/v% were used. However, the composite containing 10 w% chitosan, against the sum of cellulose and ß-Glycerophosphate, has shown less cell death and detachment when used at 0.01 w/v%, making it suitable for more in vitro studies in bone tissue engineering, as a promising economical biomaterial.

6.
Microsc Res Tech ; 84(7): 1577-1585, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33527566

ABSTRACT

Many studies have analyzed different tooth demineralization models, which generate artificial incipient lesions; however, most of them are complex, slow, not clear and results could not be employed in both primary and permanent teeth because of chemical content differences among them. This study evaluates a demineralization model on primary enamel, under three incubation periods; quantifying artificial incipient lesions formation, and depth by micro-CT, complementing with SEM for morphological characterization. Sixteen healthy human anterior primary teeth extracted for prolonged retention and orthopedic/orthodontic reasons were included in this study, previous informed consent. The sample was randomly assigned to four groups n = 4: G_Control, G_2D, G_4D, and G_7D. Micro-CT and SEM were performed during two stages: before demineralization (BD) and after demineralization (AD). A t-student test was carried out to determine differences among groups (p ≤ .05). No incipient lesions were observed in control group. Artificial lesion depth was similar among experimental groups; values were from 38.16 ± 05.40 µm to 42.61 ± 04.75 µm. An amount of 14 to 17 artificial incipient lesions were formed per group, the extension and distribution were different for each incubation period. Five erosive lesions were produced in G_7D. All experimental groups were able to form incipient artificial lesions in primary enamel. SEM characterization revealed more pronounced changes on the enamel surface, as the days of immersion in the demineralization solution increased. The 4-day incubation period is the most recommended for the demineralization model, due to the formation of incipient lesions only and its extension, which facilitates their assessment.


Subject(s)
Tooth Demineralization , Dental Enamel/diagnostic imaging , Humans , Tooth Demineralization/diagnostic imaging , Tooth, Deciduous , X-Ray Microtomography
7.
Molecules ; 24(18)2019 Sep 11.
Article in English | MEDLINE | ID: mdl-31514351

ABSTRACT

The morphological, optical, and structural changes in crystalline chiral imines derived from 2-naphthaldehyde as a result of changing the -F, -Cl, and -Br halogen (-X) atoms are reported. Scanning electron microscopy (SEM), optical absorption, photoluminescence (PL), and powder X-ray diffraction (XRD) studies were performed. Theoretical results of optical and structural properties were calculated using the PBE1PBE hybrid functional and compared with the experimental results. Differences in surface morphology, absorbance, XRD, and PL of crystals were due to the change of halogen atoms in the chiral moiety of the imine. Absorption spectra exhibited the typical bands of the naphthalene chromophore located in the ~200-350 nm range. Observed absorption bands in the UV region are associated with π→π* and n→π* electronic transitions. The band gap energy was calculated using the Tauc model. It showed a shift in the ~3.5-4.5 eV range and the crystals exhibited different electronic transitions associated with the results of absorbance in the UV region. XRD showed the monoclinic→orthorhombic crystalline phase transition. PL spectra displayed broad bands in the visible region and all the samples have an emission band (identified as a green emission band) in the ~400-750 nm range. This was associated with defects produced in the morphology, molecular packing, inductive effect and polarizability, crystalline phase transition, and increase in size of the corresponding halogen atoms; i.e., changes presumably induced by -C-X…X-, -C-X…N-, -C-N…π, and -C-X…π interactions in these crystalline materials were associated with morphological, optical, and structural changes.


Subject(s)
Density Functional Theory , Halogenation , Imines/chemistry , Luminescent Measurements , Crystallography, X-Ray , Molecular Conformation , Optical Phenomena , Static Electricity
8.
Microsc Res Tech ; 81(8): 865-871, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29737583

ABSTRACT

Innovators conditioning protocols are emerged in permanent dentin, however for deciduous dentin the information is limited; the aim of this study was to evaluate in vitro diameter of deciduous and permanent dentinal tubules after several conditioning protocols. Eighty dentin samples were distributed in sixteen groups (n = 5 p/g) and dentin surface was conditioned as follow: G1D/G1P acid etching; G2D/G2P, self-etch adhesive; G3D/G3P, G4D/G4P, Er: YAG laser irradiation at 200 mJ-25.5 J/cm2 and 300 mJ-38.2 J/cm2 , at 10 Hz under water spray respectively; G5D/G5P, G6D/G6P, G7D/G7P, and G8D/G8P were irradiated under the same energy densities followed phosphoric acid or self-etch adhesive conditioning. The sample dentin of deciduous and permanent teeth was analyzed with scanning electron microscopy and tubule diameter was evaluated by Image Tools Scandium program. Data were subjected to one-way analysis ANOVA to compare among groups with a level of significance at p ≤ .05. For deciduous dentin, diameters were from 1.52 ± 0.32 µm in G3D to 3.88 ± 0.37 µm in G1D; narrowest and widest diameter, respectively (p < .000). While permanent dentin tubules exhibited diameters from 1.16 ± 0.16/1.19 ± 0.12 µm in G7P/G8P to 2.76 ± 0.28 µm in G6P; narrowest and widest diameter, respectively (p < .000). All dentin conditioning protocols produced more open dentin tubules (diameter size) in deciduous dentin than permanent, specific conditioning protocols are required for each tissue (deciduous or permanent dentin), since same protocol produced stronger effects on primary dentin, which is important for dental clinical success in children and adolescents.


Subject(s)
Dentin/ultrastructure , Tissue Conditioning, Dental/methods , Tooth/ultrastructure , Biometry , Dentin/drug effects , Dentin/radiation effects , Humans , Image Processing, Computer-Assisted , Microscopy, Electron, Scanning , Tooth/drug effects , Tooth/radiation effects
9.
Article in English | LILACS | ID: biblio-915344

ABSTRACT

The chemical composition of the seasonal essential oils (2015-2016) from the leaves and flowers of Zaluzania montagnifolia is presented. The chemical content of those oils showed quantitative and qualitative differences. Germacrene D (19.9-29.8%), camphor (12.4- 19.4%) and ß-caryophyllene (13.7-18.5%) were the most abundant volatiles in the leaves. The essential oils from the flowers contained high amounts of camphor (32.7-37.2%) limonene (19.8-24.9%) and germacrene D (3.2-7.3%). All the seasonal essential oils showed a potent in vitro inhibition against HMG-CoA reductase. The essential oils from flowers (IC50, 40.5-55.1 µg mL-1) showed better inhibition properties than those of leaves (IC50, 84.4-123.5 µg mL-1). Camphor (IC50, 72.5 µg mL-1) and borneol (IC50, 84.4 µg mL-1) exerted a non-competitive inhibition on the enzyme. Additionally, the hydrodistillates exhibited antibacterial activity against the phytopathogenic Pseudomonas syringae pv. tabaci TBR2004 (MIC, 62.7-76.5 µg mL-1) P. syringae pv. tomato DC3000 (MIC, 45.4-50.4 µg mL-1) and P. syringae pv. phaseolicola NPS3121 (MIC, 26.7-31.9 µg mL-1). Germacrene D (MIC, 35.4-66.2 µg mL-1) and ß-caryophyllene (MIC, 36.5-54.2 µg mL-1) were the strongest anti-Pseudomonas syringae agents.


Se presenta la composición química de los aceites esenciales estacionales (2015-2016) provenientes de hojas y flores de Zaluzania montagnifolia. El contenido químico de los aceites esenciales mostró diferencias cualitativas y cuantitativas. El germacreno D (19.9-29.8%), alcanfor (12.4-19.4%) y ß-cariofileno (13.7-18.5%) fueron los volátiles más abundantes en las hojas. Los aceites esenciales de las flores contuvieron altas concentraciones de alcanfor (32.7-37.2%), limoneno (19.8-24.9%) y germacreno D (3.2-7.3%). Todos los aceites esenciales estacionales mostraron una potente inhibición in vitro contra la HMG-CoA reductasa. Los aceites esenciales de las flores (IC50, 40.5-55.1 µg mL-1) mostraron mejores propiedades inhibitorias que aquellos de las hojas (IC50, 84.4-123.5 µg mL-1). El alcanfor (IC50, 72.5 µg mL-1) y el borneol (IC50, 84.4 µg mL-1) ejercieron una inhibición no competitiva sobre la enzima. Adicionalmente, los hidrodestilados exhibieron una actividad antibacterial contra los fitopatógenos Pseudomonas syringae pv. tabaci TBR2004 (MIC, 62.7-76.5 µg mL-1) P. syringae pv. tomato DC3000 (MIC, 45.4-50.4 µg mL-1) y P. syringae pv. phaseolicola NPS3121 (MIC, 26.7-31.9 µg mL-1). El germacreno D (MIC, 35.4-66.2 µg mL-1) y ß-cariofileno (MIC, 36.5-54.2 µg mL-1) fueron los agentes más fuertes contra los patovares de Pseudomonas syringae.


Subject(s)
Oils, Volatile/chemistry , Hydroxymethylglutaryl-CoA Reductase Inhibitors/chemistry , Asteraceae , Terpenes/analysis , Oils, Volatile/pharmacology , Chromatography, Gas/methods , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Hydroxymethylglutaryl CoA Reductases/drug effects , Anti-Bacterial Agents/pharmacology
10.
Microsc Res Tech ; 81(5): 494-501, 2018 May.
Article in English | MEDLINE | ID: mdl-29411473

ABSTRACT

The morphological and chemical changes in deciduous dentin produced by different conditioning protocols were evaluated in this in vitro study. Eighty primary dentin samples were divided into eight groups (n = 10): G1, acid etching; G2, self-etching adhesive; G3, G4, Er: YAG laser irradiation at 25.5 and 38.2 J cm-2 , respectively; 10 Hz and spray irrigation. Groups 5, 6, 7, and 8 were irradiated at previous densities, and then phosphoric acid or self-etching adhesive conditioning was applied. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) were used to evaluate chemical and morphological changes. Paired t-test and One-way ANOVA were used for statistical analysis (p ≤ 0.05). All samples showed different morphology with specific characteristics according to the conditioning protocol. Changing element concentration values are expressed in atomic percent (at %). After conditioning, there were statistically significant differences (p ≤ 0.05) for p at% and Ca/P in all groups; highlighting the following additional findings by group: G1, G7, and G8 showed changes in all elements studied, G2 presented a decrease in C at% and increased Ca at%, G3 and G4 exhibited at% changes in C, trace elements and Ca. Furthermore, G5 showed at% changes in O and trace elements; while G6 changes were observed on C at%, O at% and trace elements at%. Dentin morphology and chemical composition varied in accordance with the conditioning protocol, with characteristics specific for each one that could have clinical implications for the retention and bond strength performance of adhesive materials.


Subject(s)
Dentin/cytology , Dentin/drug effects , Phosphoric Acids/pharmacology , Analysis of Variance , Dentin/ultrastructure , Humans , Microscopy, Electron, Scanning , Spectrometry, X-Ray Emission , Trace Elements/chemistry
11.
Bol. latinoam. Caribe plantas med. aromát ; 16(5): 463-470, sept. 2017. tab, graf
Article in English | LILACS | ID: biblio-912583

ABSTRACT

The chemical composition of the essential oil and carotenoid content of the parasitic plant Cuscuta mitraeformis are described for the first time. The essential oil was analyzed by GC-FID and GC-MS revealing nonanal (24.6%) as the main constituent followed by thymol (16.5%) and eugenol (7.5%). The total carotenoid content (130 mg 100 g-1 FW) was determined by HPLC-DAD. The carotenoid fraction contained ß-carotene (76.4 mg 100 g-1 FW) and lutein (18.9 mg 100 g-1 FW) as the most abundant compounds. A weak antioxidant activity was observed by the essential oil against DPPH radical (IC50, 1.4 mg mL-1), whereas a strong antioxidant activity was determined for the carotenoid fraction (IC50, 60.1 µg mL-1). The essential oil inhibited the growth of Clavibacter michiganensis, Pseudomonas syringae pv. tomato and Erwinia carotovora with minimum inhibitory concentrations of 122.5, 184.5, 234.2 µg mL-1, respectively.


La composición química del aceite esencial y el contenido de carotenoides de la planta parásita Cuscuta mitraeformis se describen por primera vez. El aceite esencial fue analizado por GC-FID y GC-MS siendo el nonanal (24.6%) el constituyente principal seguido del timol (16.5%) y el eugenol (7.5%). El contenido total de carotenoides (130 mg 100 g-1 PF) fue determinado por HPLC-DAD. La fracción de carotenoides contuvo ß-caroteno (76.4 mg 100 g-1 PF) y luteína (18.9 mg 100 g-1 PF) como compuestos mayoritarios. Fue observada una actividad antioxidante débil por parte del aceite esencial frente al radical DPPH (IC50, 1.4 mg mL-1), mientras que una fuerte actividad antioxidante fue determinada para la fracción de carotenoides (IC50, 60.1 µg mL-1). El aceite esencial inhibió el crecimiento de Clavibacter michiganensis, Pseudomonas syringae pv. tomato y Erwinia carotovora con una concentración mínima inhibitoria de 122.5, 184.5, 234.2 µg mL-1, respectivamente.


Subject(s)
Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Cuscuta/chemistry , Anti-Bacterial Agents/pharmacology , Antioxidants/pharmacology , Carotenoids/analysis , Chromatography, Gas/methods , Chromatography, High Pressure Liquid
12.
J Mol Model ; 19(2): 839-46, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23065142

ABSTRACT

The influence of vacancies and substitutional defects on the structural and electronic properties of graphene, graphene oxide, hexagonal boron nitride, and boron nitride oxide two-dimensional molecular models was studied using density functional theory (DFT) at the level of local density approximation (LDA). Bond length, dipole moment, HOMO-LUMO energy gap, and binding energy were calculated for each system with and without point defects. The results obtained indicate that the formation of a point defect does not necessary lead to structural instability; nevertheless, surface distortions and reconstruction processes were observed, mainly when a vacancy-type defect is generated. For graphene, it was found that incorporation of a point defect results in a semiconductor-semimetal transition and also increases notably its polar character. As with graphene, the formation of a point defect in a hexagonal boron nitride sheet reduces its energy gap, although its influence on the resulting dipole moment is not as dramatic as in graphene. The influence of point defects on the structural and electronic properties of graphene oxide and boron nitride oxide sheets were found to be mediated by the chemisorbed species.

SELECTION OF CITATIONS
SEARCH DETAIL
...