Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Blood Adv ; 7(15): 4003-4018, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37171626

ABSTRACT

Megakaryocytes (MKs) are the precursor cells of platelets, located in the bone marrow (BM). Once mature, they extend elongated projections named proplatelets through sinusoid vessels, emerging from the marrow stroma into the circulating blood. Not all signals from the microenvironment that regulate proplatelet formation are understood, particularly those from the BM biomechanics. We sought to investigate how MKs perceive and adapt to modifications of the stiffness of their environment. Although the BM is one of the softest tissue of the body, its rigidification results from excess fibronectin (FN), and other matrix protein deposition occur upon myelofibrosis. Here, we have shown that mouse MKs are able to detect the stiffness of a FN-coated substrate and adapt their morphology accordingly. Using a polydimethylsiloxane substrate with stiffness varying from physiological to pathological marrow, we found that a stiff matrix favors spreading, intracellular contractility, and FN fibrils assembly at the expense of proplatelet formation. Itgb3, but not Itgb1, is required for stiffness sensing, whereas both integrins are involved in fibrils assembly. In contrast, soft substrates promote proplatelet formation in an Itgb3-dependent manner, consistent with the ex vivo decrease in proplatelet formation and the in vivo decrease in platelet number in Itgb3-deficient mice. Our findings demonstrate the importance of environmental stiffness for MK functions with potential pathophysiological implications during pathologies that deregulate FN deposition and modulate stiffness in the marrow.


Subject(s)
Fibronectins , Megakaryocytes , Animals , Mice , Blood Platelets/metabolism , Bone Marrow , Fibronectins/metabolism , Megakaryocytes/metabolism , Platelet Count
2.
Blood Adv ; 7(8): 1356-1365, 2023 04 25.
Article in English | MEDLINE | ID: mdl-36490266

ABSTRACT

Alloimmunization against platelets remains a potentially serious adverse transfusion event. Alloantibodies produced by the recipient, mainly directed against human leukocyte antigen class I donor antigens, can compromise the therapeutic efficacy of subsequent transfusions, and may lead to refractoriness. Because the mechanism of anti-HLA alloantibody formation is poorly understood, this study aimed to identify the cells involved in the platelet immune response by focusing on the spleen, the main organ that orchestrates this alloimmune response. In the spleen, transfused allogeneic platelets are located in the marginal zone and interact with marginal zone B (MZB) cells, a specialized B-cell population implicated in the capture and follicular delivery of blood-borne antigens. To study the involvement of MZB cells in alloantibody production, we used a murine model reproducing major histocompatibility complex incompatibility between a donor (H2b) and recipient (H2d) that occurs during platelet transfusion. Following weekly H2b platelet transfusions, recipient H2d mice produced anti-H2b immunoglobulin G, which induced a refractory state upon subsequent transfusions. Specific immunodepletion of MZB cells or their displacement from the marginal zone to the B-cell follicles by treatment with an S1P1 antagonist before each transfusion prevented significant alloantibody formation. Under these conditions, transfused platelets were still circulating after 24 hours, whereas they were rapidly removed from circulation in alloimmunized mice. The identification of MZB cells as key players in the platelet alloimmune response opens up new perspectives for minimizing platelet alloimmunization and avoiding the associated refractory state in frequently transfused patients.


Subject(s)
Isoantibodies , Platelet Transfusion , Mice , Humans , Animals , Platelet Transfusion/adverse effects , Blood Platelets , Blood Transfusion , B-Lymphocytes , Antigens
SELECTION OF CITATIONS
SEARCH DETAIL
...