Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Int J Mol Sci ; 25(10)2024 May 07.
Article in English | MEDLINE | ID: mdl-38791135

ABSTRACT

Details of excitation and ionization acts hide a description of the biological effects of charged particle traversal through living tissue. Nanodosimetry enables the introduction of novel quantities that characterize and quantify the particle track structure while also serving as a foundation for assessing biological effects based on this quantification. This presents an opportunity to enhance the planning of charged particle radiotherapy by taking into account the ionization detail. This work uses Monte Carlo simulations with Geant4-DNA code for a wide variety of charged particles and their radiation qualities to analyze the distribution of ionization cluster sizes within nanometer-scale volumes, similar to DNA diameter. By correlating these results with biological parameters extracted from the PIDE database for the V79 cell line, a novel parameter R2 based on ionization details is proposed for the evaluation of radiation quality in terms of biological consequences, i.e., radiobiological cross section for inactivation. By incorporating the probability p of sub-lethal damage caused by a single ionization, we address limitations associated with the usually proposed nanodosimetric parameter Fk for characterizing the biological effects of radiation. We show that the new parameter R2 correlates well with radiobiological data and can be used to predict biological outcomes.


Subject(s)
Cell Survival , DNA Damage , Monte Carlo Method , Cell Survival/radiation effects , Cell Line , Computer Simulation , Humans , Animals , Databases, Factual , Radiotherapy/methods
2.
Phys Imaging Radiat Oncol ; 29: 100535, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38298885

ABSTRACT

Background and purpose: Many 4D particle therapy research concepts have been recently translated into clinics, however, remaining substantial differences depend on the indication and institute-related aspects. This work aims to summarise current state-of-the-art 4D particle therapy technology and outline a roadmap for future research and developments. Material and methods: This review focused on the clinical implementation of 4D approaches for imaging, treatment planning, delivery and evaluation based on the 2021 and 2022 4D Treatment Workshops for Particle Therapy as well as a review of the most recent surveys, guidelines and scientific papers dedicated to this topic. Results: Available technological capabilities for motion surveillance and compensation determined the course of each 4D particle treatment. 4D motion management, delivery techniques and strategies including imaging were diverse and depended on many factors. These included aspects of motion amplitude, tumour location, as well as accelerator technology driving the necessity of centre-specific dosimetric validation. Novel methodologies for X-ray based image processing and MRI for real-time tumour tracking and motion management were shown to have a large potential for online and offline adaptation schemes compensating for potential anatomical changes over the treatment course. The latest research developments were dominated by particle imaging, artificial intelligence methods and FLASH adding another level of complexity but also opportunities in the context of 4D treatments. Conclusion: This review showed that the rapid technological advances in radiation oncology together with the available intrafractional motion management and adaptive strategies paved the way towards clinical implementation.

3.
Phys Med ; 118: 103301, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38290179

ABSTRACT

PURPOSE: The aim of this work is to investigate the feasibility of the Jagiellonian Positron Emission Tomography (J-PET) scanner for intra-treatment proton beam range monitoring. METHODS: The Monte Carlo simulation studies with GATE and PET image reconstruction with CASToR were performed in order to compare six J-PET scanner geometries. We simulated proton irradiation of a PMMA phantom with a Single Pencil Beam (SPB) and Spread-Out Bragg Peak (SOBP) of various ranges. The sensitivity and precision of each scanner were calculated, and considering the setup's cost-effectiveness, we indicated potentially optimal geometries for the J-PET scanner prototype dedicated to the proton beam range assessment. RESULTS: The investigations indicate that the double-layer cylindrical and triple-layer double-head configurations are the most promising for clinical application. We found that the scanner sensitivity is of the order of 10-5 coincidences per primary proton, while the precision of the range assessment for both SPB and SOBP irradiation plans was found below 1 mm. Among the scanners with the same number of detector modules, the best results are found for the triple-layer dual-head geometry. The results indicate that the double-layer cylindrical and triple-layer double-head configurations are the most promising for the clinical application, CONCLUSIONS:: We performed simulation studies demonstrating that the feasibility of the J-PET detector for PET-based proton beam therapy range monitoring is possible with reasonable sensitivity and precision enabling its pre-clinical tests in the clinical proton therapy environment. Considering the sensitivity, precision and cost-effectiveness, the double-layer cylindrical and triple-layer dual-head J-PET geometry configurations seem promising for future clinical application.


Subject(s)
Proton Therapy , Protons , Feasibility Studies , Positron-Emission Tomography , Proton Therapy/methods , Phantoms, Imaging , Monte Carlo Method
4.
Phys Med Biol ; 68(17)2023 08 14.
Article in English | MEDLINE | ID: mdl-37489619

ABSTRACT

Objective. To propose a mathematical model for applying ionization detail (ID), the detailed spatial distribution of ionization along a particle track, to proton and ion beam radiotherapy treatment planning (RTP).Approach. Our model provides for selection of preferred ID parameters (Ip) for RTP, that associate closest to biological effects. Cluster dose is proposed to bridge the large gap between nanoscopicIpand macroscopic RTP. Selection ofIpis demonstrated using published cell survival measurements for protons through argon, comparing results for nineteenIp:Nk,k= 2, 3, …, 10, the number of ionizations in clusters ofkor more per particle, andFk,k= 1, 2, …, 10, the number of clusters ofkor more per particle. We then describe application of the model to ID-based RTP and propose a path to clinical translation.Main results. The preferredIpwereN4andF5for aerobic cells,N5andF7for hypoxic cells. Significant differences were found in cell survival for beams having the same LET or the preferredNk. Conversely, there was no significant difference forF5for aerobic cells andF7for hypoxic cells, regardless of ion beam atomic number or energy. Further, cells irradiated with the same cluster dose for theseIphad the same cell survival. Based on these preliminary results and other compelling results in nanodosimetry, it is reasonable to assert thatIpexist that are more closely associated with biological effects than current LET-based approaches and microdosimetric RBE-based models used in particle RTP. However, more biological variables such as cell line and cycle phase, as well as ion beam pulse structure and rate still need investigation.Significance. Our model provides a practical means to select preferredIpfrom radiobiological data, and to convertIpto the macroscopic cluster dose for particle RTP.


Subject(s)
Radiation Oncology , Relative Biological Effectiveness , Cell Line , Protons , Models, Biological
5.
Phys Med Biol ; 2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37295440

ABSTRACT

OBJECTIVE: The Jagiellonian PET (J-PET) technology, based on plastic scintillators, has been proposed as a cost effective tool for detecting range deviations during proton therapy. This study investigates the feasibility of using J-PET for range monitoring by means of a detailed Monte Carlo simulation study of 95 patients who underwent proton therapy at the Cyclotron Centre Bronowice (CCB) in Krakow, Poland. Approach: Discrepancies between prescribed and delivered treatments were artificially introduced in the simulations by means of shifts in patient positioning and in the Hounsfield unit to the relative proton stopping power calibration curve. A dual-layer, cylindrical J-PET geometry was simulated in an in-room monitoring scenario and a triple-layer, dual-head geometry in an in-beam protocol. The distribution of range shifts in reconstructed PET activity was visualised in the beam's eye view. Linear prediction models were constructed from all patients in the cohort, using the mean shift in reconstructed PET activity as a predictor of the mean proton range deviation. Main results: Maps of deviations in the range of reconstructed PET distributions showed agreement with those of deviations in dose range in most patients. The linear prediction model showed a good fit, with coefficient of determination r^2 = 0.84 (in-room) and 0.75 (in-beam). Residual standard error was below 1 mm: 0.33 mm (in-room) and 0.23 mm (in-beam). Significance: The precision of the proposed prediction models shows the sensitivity of the proposed J-PET scanners to shifts in proton range for a wide range of clinical treatment plans. Furthermore, it motivates the use of such models as a tool for predicting proton range deviations and opens up new prospects for investigations into the use of intra-treatment PET images for predicting clinical metrics that aid in the assessment of the quality of delivered treatment. .

6.
Phys Med Biol ; 68(10)2023 05 08.
Article in English | MEDLINE | ID: mdl-37011632

ABSTRACT

Objective.Protons have advantageous dose distributions and are increasingly used in cancer therapy. At the depth of the Bragg peak range, protons produce a mixed radiation field consisting of low- and high-linear energy transfer (LET) components, the latter of which is characterized by an increased ionization density on the microscopic scale associated with increased biological effectiveness. Prediction of the yield and LET of primary and secondary charged particles at a certain depth in the patient is performed by Monte Carlo simulations but is difficult to verify experimentally.Approach.Here, the results of measurements performed with Timepix detector in the mixed radiation field produced by a therapeutic proton beam in water are presented and compared to Monte Carlo simulations. The unique capability of the detector to perform high-resolution single particle tracking and identification enhanced by artificial intelligence allowed to resolve the particle type and measure the deposited energy of each particle comprising the mixed radiation field. Based on the collected data, biologically important physics parameters, the LET of single protons and dose-averaged LET, were computed.Main results.An accuracy over 95% was achieved for proton recognition with a developed neural network model. For recognized protons, the measured LET spectra generally agree with the results of Monte Carlo simulations. The mean difference between dose-averaged LET values obtained from measurements and simulations is 17%. We observed a broad spectrum of LET values ranging from a fraction of keVµm-1to about 10 keVµm-1for most of the measurements performed in the mixed radiation fields.Significance.It has been demonstrated that the introduced measurement method provides experimental data for validation of LETDor LET spectra in any treatment planning system. The simplicity and accessibility of the presented methodology make it easy to be translated into a clinical routine in any proton therapy facility.


Subject(s)
Proton Therapy , Humans , Proton Therapy/methods , Protons , Artificial Intelligence , Linear Energy Transfer , Radiotherapy Dosage , Monte Carlo Method , Radiometry
7.
Phys Med Biol ; 67(24)2022 12 12.
Article in English | MEDLINE | ID: mdl-36541512

ABSTRACT

Objective.Verification of delivered proton therapy treatments is essential for reaping the many benefits of the modality, with the most widely proposedin vivoverification technique being the imaging of positron emitting isotopes generated in the patient during treatment using positron emission tomography (PET). The purpose of this work is to reduce the computational resources and time required for simulation of patient activation during proton therapy using the GPU accelerated Monte Carlo code FRED, and to validate the predicted activity against the widely used Monte Carlo code GATE.Approach.We implement a continuous scoring approach for the production of positron emitting isotopes within FRED version 5.59.9. We simulate treatment plans delivered to 95 head and neck patients at Centrum Cyklotronowe Bronowice using this GPU implementation, and verify the accuracy using the Monte Carlo toolkit GATE version 9.0.Main results.We report an average reduction in computational time by a factor of 50 when using a local system with 2 GPUs as opposed to a large compute cluster utilising between 200 to 700 CPU threads, enabling simulation of patient activity within an average of 2.9 min as opposed to 146 min. All simulated plans are in good agreement across the two Monte Carlo codes. The two codes agree within a maximum of 0.95σon a voxel-by-voxel basis for the prediction of 7 different isotopes across 472 simulated fields delivered to 95 patients, with the average deviation over all fields being 6.4 × 10-3σ.Significance.The implementation of activation calculations in the GPU accelerated Monte Carlo code FRED provides fast and reliable simulation of patient activation following proton therapy, allowing for research and development of clinical applications of range verification for this treatment modality using PET to proceed at a rapid pace.


Subject(s)
Proton Therapy , Humans , Electrons , Protons , Positron-Emission Tomography/methods , Isotopes , Monte Carlo Method , Phantoms, Imaging , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy Dosage
8.
Phys Med Biol ; 2022 Sep 22.
Article in English | MEDLINE | ID: mdl-36137551

ABSTRACT

OBJECTIVE: This paper reports on the implementation and shows examples of the use of the ProTheRaMon framework for simulating the delivery of proton therapy treatment plans and range monitoring using positron emission tomography (PET). ProTheRaMon offers complete processing of proton therapy treatment plans, patient CT geometries, and intra-treatment PET imaging, taking into account therapy and imaging coordinate systems and activity decay during the PET imaging protocol specific to a given proton therapy facility. We present the ProTheRaMon framework and illustrate its potential use case and data processing steps for a patient treated at the Cyclotron Centre Bronowice (CCB) proton therapy center in Krakow, Poland. APPROACH: The ProTheRaMon framework is based on GATE Monte Carlo software, the CASToR reconstruction package and in-house developed Python and bash scripts. The framework consists of five separated simulation and data processing steps, that can be further optimized according to the user's needs and specific settings of a given proton therapy facility and PET scanner design. MAIN RESULTS: ProTheRaMon is presented using example data from a patient treated at CCB and the J-PET scanner to demonstrate the application of the framework for proton therapy range monitoring. The output of each simulation and data processing stage is described and visualized. SIGNIFICANCE: We demonstrate that the ProTheRaMon simulation platform is a high-performance tool, capable of running on a computational cluster and suitable for multi-parameter studies, with databases consisting of large number of patients, as well as different PET scanner geometries and settings for range monitoring in a clinical environment. Due to its modular structure, the ProTheRaMon framework can be adjusted for different proton therapy centers and/or different PET detector geometries. It is available to the community via github.

9.
Phys Med Biol ; 67(18)2022 09 08.
Article in English | MEDLINE | ID: mdl-36001985

ABSTRACT

This paper reviews the ecosystem of GATE, an open-source Monte Carlo toolkit for medical physics. Based on the shoulders of Geant4, the principal modules (geometry, physics, scorers) are described with brief descriptions of some key concepts (Volume, Actors, Digitizer). The main source code repositories are detailed together with the automated compilation and tests processes (Continuous Integration). We then described how the OpenGATE collaboration managed the collaborative development of about one hundred developers during almost 20 years. The impact of GATE on medical physics and cancer research is then summarized, and examples of a few key applications are given. Finally, future development perspectives are indicated.


Subject(s)
Ecosystem , Software , Computer Simulation , Monte Carlo Method , Physics
10.
Radiat Oncol ; 17(1): 50, 2022 Mar 09.
Article in English | MEDLINE | ID: mdl-35264184

ABSTRACT

BACKGROUND: Variable relative biological effectiveness (vRBE) in proton therapy might significantly modify the prediction of RBE-weighted dose delivered to a patient during proton therapy. In this study we will present a method to quantify the biological range extension of the proton beam, which results from the application of vRBE approach in RBE-weighted dose calculation. METHODS AND MATERIALS: The treatment plans of 95 patients (brain and skull base patients) were used for RBE-weighted dose calculation with constant and the McNamara RBE model. For this purpose the Monte Carlo tool FRED was used. The RBE-weighted dose distributions were analysed using indices from dose-volume histograms. We used the volumes receiving at least 95% of the prescribed dose (V95) to estimate the biological range extension resulting from vRBE approach. RESULTS: The vRBE model shows higher median value of relative deposited dose and D95 in the planning target volume by around 1% for brain patients and 4% for skull base patients. The maximum doses in organs at risk calculated with vRBE was up to 14 Gy above dose limit. The mean biological range extension was greater than 0.4 cm. DISCUSSION: Our method of estimation of biological range extension is insensitive for dose inhomogeneities and can be easily used for different proton plans with intensity-modulated proton therapy (IMPT) optimization. Using volumes instead of dose profiles, which is the common method, is more universal. However it was tested only for IMPT plans on fields arranged around the tumor area. CONCLUSIONS: Adopting a vRBE model results in an increase in dose and an extension of the beam range, which is especially disadvantageous in cancers close to organs at risk. Our results support the need to re-optimization of proton treatment plans when considering vRBE.


Subject(s)
Brain Neoplasms/radiotherapy , Skull Base Neoplasms/radiotherapy , Brain Neoplasms/pathology , Female , Humans , Male , Monte Carlo Method , Neoplasm Staging , Organs at Risk , Poland , Proton Therapy/methods , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Relative Biological Effectiveness , Skull Base Neoplasms/pathology , Tomography, X-Ray Computed
11.
Front Oncol ; 12: 806153, 2022.
Article in English | MEDLINE | ID: mdl-35356213

ABSTRACT

The major aim of radiation therapy is to provide curative or palliative treatment to cancerous malignancies while minimizing damage to healthy tissues. Charged particle radiotherapy utilizing carbon ions or protons is uniquely suited for this task due to its ability to achieve highly conformal dose distributions around the tumor volume. For these treatment modalities, uncertainties in the localization of patient anatomy due to inter- and intra-fractional motion present a heightened risk of undesired dose delivery. A diverse range of mitigation strategies have been developed and clinically implemented in various disease sites to monitor and correct for patient motion, but much work remains. This review provides an overview of current clinical practices for inter and intra-fractional motion management in charged particle therapy, including motion control, current imaging and motion tracking modalities, as well as treatment planning and delivery techniques. We also cover progress to date on emerging technologies including particle-based radiography imaging, novel treatment delivery methods such as tumor tracking and FLASH, and artificial intelligence and discuss their potential impact towards improving or increasing the challenge of motion mitigation in charged particle therapy.

12.
Phys Med Biol ; 66(24)2021 12 10.
Article in English | MEDLINE | ID: mdl-34731854

ABSTRACT

This topical review summarizes underlying concepts of nanodosimetry. It describes the development and current status of nanodosimetric detector technology. It also gives an overview of Monte Carlo track structure simulations that can provide nanodosimetric parameters for treatment planning of proton and ion therapy. Classical and modern radiobiological assays that can be used to demonstrate the relationship between the frequency and complexity of DNA lesion clusters and nanodosimetric parameters are reviewed. At the end of the review, existing approaches of treatment planning based on relative biological effectiveness (RBE) models or dose-averaged linear energy transfer are contrasted with an RBE-independent approach based on nandosimetric parameters. Beyond treatment planning, nanodosimetry is also expected to have applications and give new insights into radiation protection dosimetry.


Subject(s)
Proton Therapy , Linear Energy Transfer , Monte Carlo Method , Radiometry , Relative Biological Effectiveness
13.
Sci Adv ; 7(42): eabh4394, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34644101

ABSTRACT

In vivo assessment of cancer and precise location of altered tissues at initial stages of molecular disorders are important diagnostic challenges. Positronium is copiously formed in the free molecular spaces in the patient's body during positron emission tomography (PET). The positronium properties vary according to the size of inter- and intramolecular voids and the concentration of molecules in them such as, e.g., molecular oxygen, O2; therefore, positronium imaging may provide information about disease progression during the initial stages of molecular alterations. Current PET systems do not allow acquisition of positronium images. This study presents a new method that enables positronium imaging by simultaneous registration of annihilation photons and deexcitation photons from pharmaceuticals labeled with radionuclides. The first positronium imaging of a phantom built from cardiac myxoma and adipose tissue is demonstrated. It is anticipated that positronium imaging will substantially enhance the specificity of PET diagnostics.

14.
Phys Med Biol ; 66(22)2021 11 11.
Article in English | MEDLINE | ID: mdl-34706345

ABSTRACT

The purpose of this work was to validate the calculation accuracy of nanodosimetric quantities in Geant4-DNA track structure simulation code. We implemented the Jet Counter (JC) nanodosimeter geometry in the simulation platform and quantified the impact of the Geant4-DNA physics models and JC detector performance on the ionization cluster size distributions (ICSD). ICSD parameters characterize the quality of radiation field and are supposed to be correlated to the complexity of the initial DNA damage in nanoscale and eventually the response of biological systems to radiation. We compared Monte Carlo simulations of ICSD in JC geometry performed using Geant4-DNA and PTra codes with experimental data collected for alpha particles at 3.8 MeV. We investigated the impact of simulation and experimental settings, i.e., three Geant4-DNA physics models, three sizes of a nanometer sensitive volume, gas to water density scaling procedure, JC ion extraction efficiency and the presence of passive components of the detector on the ICSD and their parameters. We found that ICSD in JC geometry obtained from Geant4-DNA simulations in water correspond well to ICSD measurements in nitrogen gas for all investigated settings, while the best agreement is for Geant4-DNA physics option 4. This work also discusses the accuracy and robustness of ICSD parameters in the context of the application of track structure simulation methods for treatment planning in particle therapy.


Subject(s)
Alpha Particles , DNA , Alpha Particles/therapeutic use , Computer Simulation , DNA/chemistry , Monte Carlo Method , Radiometry/methods , Water/chemistry
15.
Radiother Oncol ; 163: 143-149, 2021 10.
Article in English | MEDLINE | ID: mdl-34461183

ABSTRACT

PURPOSE: We investigated the relationship between RBE-weighted dose (DRBE) calculated with constant (cRBE) and variable RBE (vRBE), dose-averaged linear energy transfer (LETd) and the risk of radiographic changes in skull base patients treated with protons. METHODS: Clinical treatment plans of 45 patients were recalculated with Monte Carlo tool FRED. Radiographic changes (i.e. edema and/or necrosis) were identified by MRI. Dosimetric parameters for cRBE and vRBE were computed. Biological margin extension and voxel-based analysis were employed looking for association of DRBE(vRBE) and LETd with brain edema and/or necrosis. RESULTS: When using vRBE, Dmax in the brain was above the highest dose limits for 38% of patients, while such limit was never exceeded assuming cRBE. Similar values of Dmax were observed in necrotic regions, brain and temporal lobes. Most of the brain necrosis was in proximity to the PTV. The voxel-based analysis did not show evidence of an association with high LETd values. CONCLUSIONS: When looking at standard dosimetric parameters, the higher dose associated with vRBE seems to be responsible for an enhanced risk of radiographic changes. However, as revealed by a voxel-based analysis, the large inter-patient variability hinders the identification of a clear effect for high LETd.


Subject(s)
Proton Therapy , Skull Base Neoplasms , Brain/diagnostic imaging , Humans , Monte Carlo Method , Necrosis/etiology , Proton Therapy/adverse effects , Radiotherapy Planning, Computer-Assisted , Relative Biological Effectiveness , Skull Base Neoplasms/diagnostic imaging , Skull Base Neoplasms/radiotherapy
16.
Phys Med ; 82: 54-63, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33588228

ABSTRACT

The 4D Treatment Planning Workshop for Particle Therapy, a workshop dedicated to the treatment of moving targets with scanned particle beams, started in 2009 and since then has been organized annually. The mission of the workshop is to create an informal ground for clinical medical physicists, medical physics researchers and medical doctors interested in the development of the 4D technology, protocols and their translation into clinical practice. The 10th and 11th editions of the workshop took place in Sapporo, Japan in 2018 and Krakow, Poland in 2019, respectively. This review report from the Sapporo and Krakow workshops is structured in two parts, according to the workshop programs. The first part comprises clinicians and physicists review of the status of 4D clinical implementations. Corresponding talks were given by speakers from five centers around the world: Maastro Clinic (The Netherlands), University Medical Center Groningen (The Netherlands), MD Anderson Cancer Center (United States), University of Pennsylvania (United States) and The Proton Beam Therapy Center of Hokkaido University Hospital (Japan). The second part is dedicated to novelties in 4D research, i.e. motion modelling, artificial intelligence and new technologies which are currently being investigated in the radiotherapy field.


Subject(s)
Artificial Intelligence , Four-Dimensional Computed Tomography , Humans , Japan , Poland , Radiotherapy Planning, Computer-Assisted
17.
Phys Med ; 54: 121-130, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30337001

ABSTRACT

In 2016 and 2017, the 8th and 9th 4D treatment planning workshop took place in Groningen (the Netherlands) and Vienna (Austria), respectively. This annual workshop brings together international experts to discuss research, advances in clinical implementation as well as problems and challenges in 4D treatment planning, mainly in spot scanned proton therapy. In the last two years several aspects like treatment planning, beam delivery, Monte Carlo simulations, motion modeling and monitoring, QA phantoms as well as 4D imaging were thoroughly discussed. This report provides an overview of discussed topics, recent findings and literature review from the last two years. Its main focus is to highlight translation of 4D research into clinical practice and to discuss remaining challenges and pitfalls that still need to be addressed and to be overcome.


Subject(s)
Four-Dimensional Computed Tomography , Radiotherapy Planning, Computer-Assisted/methods , Monte Carlo Method , Movement , Phantoms, Imaging , Radiotherapy Dosage
18.
Phys Med Biol ; 2017 Sep 08.
Article in English | MEDLINE | ID: mdl-28885189

ABSTRACT

In this paper we report the re-analysis of the data published in (Piersanti et al. 2014) documenting the charged secondary particles production induced by the interaction of a 220 MeV/u 12C ion beam impinging on a polymethyl methacrylate (PMMA) target, measured in 2012 at the GSI facility in Darmstadt (Germany). This re-analysis takes into account the inhomogeneous light response of the LYSO crystal in the experimental setup measured in a subsequent experiment (2014) performed in the Heidelberg Ion- Beam Therapy Center. A better description of the detector and re-calculation of the geometrical efficiencies have been implemented as well, based on an improved approach that accounts also for the energy dependence of the emission spectrum. The new analysis has small effect on the total secondary charged flux, but has an impact on the production yield and emission velocity distributions of the different particle species (protons, deuterons and tritons) at different angles with respect to the beam direction (60° and 90°). All these observables indeed depend on the particle identification algorithms and hence on the LYSO detector energy response. The results of the data re-analysis presented here are intended to supersede and replace the results published in (Piersanti et al. 2014).

19.
Phys Med ; 34: 18-27, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28111101

ABSTRACT

Charged particle therapy is a technique for cancer treatment that exploits hadron beams, mostly protons and carbon ions. A critical issue is the monitoring of the beam range so to check the correct dose deposition to the tumor and surrounding tissues. The design of a new tracking device for beam range real-time monitoring in pencil beam carbon ion therapy is presented. The proposed device tracks secondary charged particles produced by beam interactions in the patient tissue and exploits the correlation of the charged particle emission profile with the spatial dose deposition and the Bragg peak position. The detector, currently under construction, uses the information provided by 12 layers of scintillating fibers followed by a plastic scintillator and a pixelated Lutetium Fine Silicate (LFS) crystal calorimeter. An algorithm to account and correct for emission profile distortion due to charged secondaries absorption inside the patient tissue is also proposed. Finally detector reconstruction efficiency for charged particle emission profile is evaluated using a Monte Carlo simulation considering a quasi-realistic case of a non-homogenous phantom.


Subject(s)
Heavy Ion Radiotherapy/instrumentation , Equipment Design , Phantoms, Imaging , Protons , Radiotherapy Dosage , Scintillation Counting
20.
Front Oncol ; 6: 177, 2016.
Article in English | MEDLINE | ID: mdl-27536555

ABSTRACT

The interaction of the incoming beam radiation with the patient body in hadrontherapy treatments produces secondary charged and neutral particles, whose detection can be used for monitoring purposes and to perform an on-line check of beam particle range. In the context of ion-therapy with active scanning, charged particles are potentially attractive since they can be easily tracked with a high efficiency, in presence of a relatively low background contamination. In order to verify the possibility of exploiting this approach for in-beam monitoring in ion-therapy, and to guide the design of specific detectors, both simulations and experimental tests are being performed with ion beams impinging on simple homogeneous tissue-like targets (PMMA). From these studies, a resolution of the order of few millimeters on the single track has been proven to be sufficient to exploit charged particle tracking for monitoring purposes, preserving the precision achievable on longitudinal shape. The results obtained so far show that the measurement of charged particles can be successfully implemented in a technology capable of monitoring both the dose profile and the position of the Bragg peak inside the target and finally lead to the design of a novel profile detector. Crucial aspects to be considered are the detector positioning, to be optimized in order to maximize the available statistics, and the capability of accounting for the multiple scattering interactions undergone by the charged fragments along their exit path from the patient body. The experimental results collected up to now are also valuable for the validation of Monte Carlo simulation software tools and their implementation in Treatment Planning Software packages.

SELECTION OF CITATIONS
SEARCH DETAIL
...