Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 171
Filter
1.
Nat Commun ; 15(1): 5833, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992033

ABSTRACT

Arthropod-borne viruses represent a crucial public health threat. Current arboviral serology assays are either labor intensive or incapable of distinguishing closely related viruses, and many zoonotic arboviruses that may transition to humans lack any serologic assays. In this study, we present a programmable phage display platform, ArboScan, that evaluates antibody binding to overlapping peptides that represent the proteomes of 691 human and zoonotic arboviruses. We confirm that ArboScan provides detailed antibody binding information from animal sera, human sera, and an arthropod blood meal. ArboScan identifies distinguishing features of antibody responses based on exposure history in a Colombian cohort of Zika patients. Finally, ArboScan details epitope level information that rapidly identifies candidate epitopes with potential protective significance. ArboScan thus represents a resource for characterizing human and animal arbovirus antibody responses at cohort scale.


Subject(s)
Antibodies, Viral , Arboviruses , Humans , Arboviruses/immunology , Arboviruses/isolation & purification , Animals , Antibodies, Viral/immunology , Antibodies, Viral/blood , Peptides/immunology , Peptides/chemistry , Zika Virus Infection/virology , Zika Virus Infection/immunology , Zika Virus Infection/blood , Zika Virus/immunology , Epitopes/immunology , Serologic Tests/methods , Arbovirus Infections/virology , Arbovirus Infections/immunology , Proteome , Colombia , Female , Peptide Library , Cell Surface Display Techniques , Male
2.
medRxiv ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38978644

ABSTRACT

The historically fragmented biomedical data ecosystem has moved towards harmonization under the findable, accessible, interoperable, and reusable (FAIR) data principles, creating more opportunities for cloud-based research. This shift is especially opportune for scientists across diverse domains interested in implementing creative, nonstandard computational analytic pipelines on large and varied datasets. However, executing custom cloud analyses may present difficulties, particularly for investigators lacking advanced computational expertise. Here, we present an accessible, streamlined approach for the cloud compute platform CAVATICA that offers a solution. We outline how we developed a custom workflow in the cloud, for analyzing whole genome sequences of case-parent trios to detect sex-specific genetic effects on orofacial cleft risk, which required several programming languages and custom software packages. The approach involves just three components: Docker to containerize software environments, tool creation for each analysis step, and a visual workflow editor to weave the tools into a Common Workflow Language (CWL) pipeline. Our approach should be accessible to any investigator with basic computational skills, is readily extended to implement any scalable high-throughput biomedical data analysis in the cloud, and is applicable to other commonly used compute platforms such as BioData Catalyst. We believe our approach empowers versatile data reuse and promotes accelerated biomedical discovery in a time of substantial FAIR data.

3.
Nat Commun ; 15(1): 4546, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806494

ABSTRACT

Asthma has striking disparities across ancestral groups, but the molecular underpinning of these differences is poorly understood and minimally studied. A goal of the Consortium on Asthma among African-ancestry Populations in the Americas (CAAPA) is to understand multi-omic signatures of asthma focusing on populations of African ancestry. RNASeq and DNA methylation data are generated from nasal epithelium including cases (current asthma, N = 253) and controls (never-asthma, N = 283) from 7 different geographic sites to identify differentially expressed genes (DEGs) and gene networks. We identify 389 DEGs; the top DEG, FN1, was downregulated in cases (q = 3.26 × 10-9) and encodes fibronectin which plays a role in wound healing. The top three gene expression modules implicate networks related to immune response (CEACAM5; p = 9.62 × 10-16 and CPA3; p = 2.39 × 10-14) and wound healing (FN1; p = 7.63 × 10-9). Multi-omic analysis identifies FKBP5, a co-chaperone of glucocorticoid receptor signaling known to be involved in drug response in asthma, where the association between nasal epithelium gene expression is likely regulated by methylation and is associated with increased use of inhaled corticosteroids. This work reveals molecular dysregulation on three axes - increased Th2 inflammation, decreased capacity for wound healing, and impaired drug response - that may play a critical role in asthma within the African Diaspora.


Subject(s)
Asthma , Black People , DNA Methylation , Nasal Mucosa , Tacrolimus Binding Proteins , Humans , Asthma/genetics , Asthma/metabolism , Nasal Mucosa/metabolism , Tacrolimus Binding Proteins/genetics , Tacrolimus Binding Proteins/metabolism , Female , Male , Black People/genetics , Adult , Gene Regulatory Networks , Fibronectins/metabolism , Fibronectins/genetics , Case-Control Studies , Gene Expression Regulation , Middle Aged , Multiomics
4.
Nat Commun ; 15(1): 1577, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38383452

ABSTRACT

We investigate a relatively underexplored component of the gut-immune axis by profiling the antibody response to gut phages using Phage Immunoprecipitation Sequencing (PhIP-Seq). To cover large antigenic spaces, we develop Dolphyn, a method that uses machine learning to select peptides from protein sets and compresses the proteome through epitope-stitching. Dolphyn compresses the size of a peptide library by 78% compared to traditional tiling, increasing the antibody-reactive peptides from 10% to 31%. We find that the immune system develops antibodies to human gut bacteria-infecting viruses, particularly E.coli-infecting Myoviridae. Cost-effective PhIP-Seq libraries designed with Dolphyn enable the assessment of a wider range of proteins in a single experiment, thus facilitating the study of the gut-immune axis.


Subject(s)
Bacteriophages , Peptide Library , Humans , Epitopes , Amino Acid Sequence , Peptides/genetics , Antibodies , Bacteriophages/genetics , Epitope Mapping/methods
5.
Front Immunol ; 14: 1178520, 2023.
Article in English | MEDLINE | ID: mdl-37744365

ABSTRACT

Background: High HIV viral load (VL) is associated with increased transmission risk and faster disease progression. HIV controllers achieve viral suppression without antiretroviral (ARV) treatment. We evaluated viremic control in a community-randomized trial with >48,000 participants. Methods: A massively multiplexed antibody profiling system, VirScan, was used to quantify pre- and post-infection antibody reactivity to HIV peptides in 664 samples from 429 participants (13 controllers, 135 viremic non-controllers, 64 other non-controllers, 217 uninfected persons). Controllers had VLs <2,000 copies/mL with no ARV drugs detected at the first HIV-positive visit and one year later. Viremic non-controllers had VLs 2,000 copies/mL with no ARV drugs detected at the first HIV-positive visit. Other non-controllers had either ARV drugs detected at the first HIV-positive visit (n=47) or VLs <2,000 copies/mL with no ARV drugs detected at only one HIV-positive visit (n=17). Results: We identified pre-infection HIV antibody reactivities that correlated with post-infection VL. Pre-infection reactivity to an epitope in the HR2 domain of gp41 was associated with controller status and lower VL. Pre-infection reactivity to an epitope in the C2 domain of gp120 was associated with non-controller status and higher VL. Different patterns of antibody reactivity were observed over time for these two epitopes. Conclusion: These studies suggest that pre-infection HIV antibodies are associated with controller status and modulation of HIV VL. These findings may inform research on antibody-based interventions for HIV treatment.


Subject(s)
HIV Infections , HIV-1 , Humans , Viral Load , HIV Antibodies , Anti-Retroviral Agents/therapeutic use , Epitopes , Viremia/drug therapy , HIV Infections/drug therapy
6.
bioRxiv ; 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37577562

ABSTRACT

We investigated a relatively underexplored component of the gut-immune axis by profiling the antibody response to gut phages using Phage Immunoprecipitation Sequencing (PhIP-Seq). To enhance this approach, we developed Dolphyn, a novel method that uses machine learning to select peptides from protein sets and compresses the proteome through epitope-stitching. Dolphyn improves the fraction of gut phage library peptides bound by antibodies from 10% to 31% in healthy individuals, while also reducing the number of synthesized peptides by 78%. In our study on gut phages, we discovered that the immune system develops antibodies to bacteria-infecting viruses in the human gut, particularly E.coli-infecting Myoviridae. Cost-effective PhIP-Seq libraries designed with Dolphyn enable the assessment of a wider range of proteins in a single experiment, thus facilitating the study of the gut-immune axis.

7.
PLOS Glob Public Health ; 3(8): e0001840, 2023.
Article in English | MEDLINE | ID: mdl-37531325

ABSTRACT

Accurately quantifying the burden of malaria over time is an important goal of malaria surveillance efforts and can enable effective targeting and evaluation of interventions. Malaria surveillance methods capture active or recent infections which poses several challenges to achieving malaria surveillance goals. In high transmission settings, asymptomatic infections are common and therefore accurate measurement of malaria burden demands active surveillance; in low transmission regions where infections are rare accurate surveillance requires sampling large subsets of the population; and in any context monitoring malaria burden over time necessitates serial sampling. Antibody responses to Plasmodium falciparum parasites persist after infection and therefore measuring antibodies has the potential to overcome several of the current obstacles to accurate malaria surveillance. Identifying which antibody responses are markers of the timing and intensity of past exposure to P. falciparum remains challenging, particularly among adults who tend to be re-exposed multiple times over the course of their lifetime and therefore have similarly high antibody responses to many Plasmodium antigens. A previous analysis of 479 serum samples from individuals in three regions in southern Africa with different historical levels of P. falciparum malaria transmission (high, intermediate, and low) revealed regional differences in antibody responses to P. falciparum antigens among children under 5 years of age. Using a novel bioinformatic pipeline optimized for protein microarrays that minimizes between-sample technical variation, we used antibody responses to Plasmodium antigens as predictors in random forest models to classify samples from adults into these three regions of differing historical malaria transmission with high accuracy (AUC = 0.99). Many of the most important antigens for classification in these models do not overlap with previously published results and are therefore novel candidate markers for the timing and intensity of past exposure to P. falciparum. Measuring antibody responses to these antigens could lead to improved malaria surveillance.

8.
Stat Med ; 42(9): 1445-1460, 2023 04 30.
Article in English | MEDLINE | ID: mdl-36872556

ABSTRACT

Protein microarrays are a promising technology that measure protein levels in serum or plasma samples. Due to their high technical variability and high variation in protein levels across serum samples in any population, directly answering biological questions of interest using protein microarray measurements is challenging. Analyzing preprocessed data and within-sample ranks of protein levels can mitigate the impact of between-sample variation. As for any analysis, ranks are sensitive to preprocessing, but loss function based ranks that accommodate major structural relations and components of uncertainty are very effective. Bayesian modeling with full posterior distributions for quantities of interest produce the most effective ranks. Such Bayesian models have been developed for other assays, for example, DNA microarrays, but modeling assumptions for these assays are not appropriate for protein microarrays. Consequently, we develop and evaluate a Bayesian model to extract the full posterior distribution of normalized protein levels and associated ranks for protein microarrays, and show that it fits well to data from two studies that use protein microarrays produced by different manufacturing processes. We validate the model via simulation and demonstrate the downstream impact of using estimates from this model to obtain optimal ranks.


Subject(s)
Protein Array Analysis , Humans , Bayes Theorem , Computer Simulation , Oligonucleotide Array Sequence Analysis
9.
J Allergy Clin Immunol ; 151(4): 1137-1142.e4, 2023 04.
Article in English | MEDLINE | ID: mdl-36403663

ABSTRACT

BACKGROUND: Deleterious variation in the epidermal differentiation complex (EDC) on chromosome 1 is a well-known genetic determinant of atopic dermatitis (AD) and has been associated with risk of peanut allergy (PA) in population-based studies. OBJECTIVE: Our aim was to determine the effect of genetic variation in the EDC on AD trajectory and risk of PA in early life. METHODS: Genome sequencing was used to measure genetic variation in the EDC in the Learning Early about Peanut Allergy (LEAP) study participants. Association tests were done to identify gene- and variant-level predicted deleterious variation associated with AD severity by using the Scoring Atopic Dermatitis (SCORAD) tool (n = 559) at baseline and each follow-up visit, as well as PA and food allergy in peanut avoiders (n = 275). Predicted deleterious variants included missense variants that were frameshift insertions, frameshift deletions, stop-gain mutations, or stop-loss mutations. Associations between variant load, SCORAD score, and PA were tested by using linear and generalized linear regression models. RESULTS: The genes FLG, FLG2, HRNR, and TCHH1 harbored the most predicted deleterious variation (30, 6, 3, and 1 variant, respectively). FLG variants were associated with SCORAD score at all time points; 4 variants (R1798X, R501X, S126X, and S761fs) drove the association with SCORAD score at each time point, and higher variant load was associated with greater AD severity over time. There was an association between these variants and PA, which remained significant independent of baseline AD severity (odds ratio = 2.63 [95% CI = 1.11-6.01] [P = .02]). CONCLUSIONS: Variation in FLG predicted to be deleterious is associated with AD severity at baseline and longitudinally and has an association with PA independent of baseline severity.


Subject(s)
Dermatitis, Atopic , Peanut Hypersensitivity , Humans , Peanut Hypersensitivity/genetics , Dermatitis, Atopic/genetics , Frameshift Mutation , Mutation , Arachis/genetics
10.
Front Immunol ; 13: 941839, 2022.
Article in English | MEDLINE | ID: mdl-36466872

ABSTRACT

Rationale: Previous studies identified an interaction between HLA and oral peanut exposure. HLA-DQA1*01:02 had a protective role with the induction of Ara h 2 epitope-specific IgG4 associated with peanut consumption during the LEAP clinical trial for prevention of peanut allergy, while it was a risk allele for peanut allergy in the peanut avoidance group. We have now evaluated this gene-environment interaction in two subsequent peanut oral immunotherapy (OIT) trials - IMPACT and POISED - to better understand the potential for the HLA-DQA1*01:02 allele as an indicator of higher likelihood of desensitization, sustained unresponsiveness, and peanut allergy remission. Methods: We determined HLA-DQA1*01:02 carrier status using genome sequencing from POISED (N=118, age: 7-55yr) and IMPACT (N=126, age: 12-<48mo). We tested for association with remission, sustained unresponsiveness (SU), and desensitization in the OIT groups, as well as peanut component specific IgG4 (psIgG4) using generalized linear models and adjusting for relevant covariates and ancestry. Results: While not quite statistically significant, a higher proportion of HLA-DQA1*01:02 carriers receiving OIT in IMPACT were desensitized (93%) compared to non-carriers (78%); odds ratio (OR)=5.74 (p=0.06). In this sample we also observed that a higher proportion of carriers achieved remission (35%) compared to non-carriers (22%); OR=1.26 (p=0.80). In POISED, carriers more frequently attained continued desensitization (80% versus 61% among non-carriers; OR=1.28, p=0.86) and achieved SU (52% versus 31%; OR=2.32, p=0.19). psIgG4 associations with HLA-DQA1*01:02 in the OIT arm of IMPACT which included younger study subjects recapitulated patterns noted in LEAP, but no associations of note were observed in the older POISED study subjects. Conclusions: Findings across three clinical trials show a pattern of a gene environment interaction between HLA and oral peanut exposure. Age, and prior sensitization contribute additional determinants of outcomes, consistent with a mechanism of restricted antigen recognition fundamental to driving protective immune responses to OIT.


Subject(s)
Arachis , Peanut Hypersensitivity , Adolescent , Adult , Child , Humans , Middle Aged , Young Adult , Immunoglobulin G , Immunologic Factors , Immunotherapy , Peanut Hypersensitivity/genetics , Peanut Hypersensitivity/therapy , Clinical Trials as Topic
11.
BMC Infect Dis ; 22(1): 838, 2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36368950

ABSTRACT

BACKGROUND: Multi-assay algorithms (MAAs) are used to estimate population-level HIV incidence and identify individuals with recent infection. Many MAAs use low viral load (VL) as a biomarker for long-term infection. This could impact incidence estimates in settings with high rates of early HIV treatment initiation. We evaluated the performance of two MAAs that do not include VL. METHODS: Samples were collected from 219 seroconverters (infected < 1 year) and 4376 non-seroconverters (infected > 1 year) in the HPTN 071 (PopART) trial; 28.8% of seroconverter samples and 73.2% of non-seroconverter samples had VLs ≤ 400 copies/mL. Samples were tested with the Limiting Antigen Avidity assay (LAg) and JHU BioRad-Avidity assays. Antibody reactivity to two HIV peptides was measured using the MSD U-PLEX assay. Two MAAs were evaluated that do not include VL: a MAA that includes the LAg-Avidity assay and BioRad-Avidity assay (LAg + BR) and a MAA that includes the LAg-Avidity assay and two peptide biomarkers (LAg + PepPair). Performance of these MAAs was compared to a widely used MAA that includes LAg and VL (LAg + VL). RESULTS: The incidence estimate for LAg + VL (1.29%, 95% CI: 0.97-1.62) was close to the observed longitudinal incidence (1.34% 95% CI: 1.17-1.53). The incidence estimates for the other two MAAs were higher (LAg + BR: 2.56%, 95% CI 2.01-3.11; LAg + PepPair: 2.84%, 95% CI: 1.36-4.32). LAg + BR and LAg + PepPair also misclassified more individuals infected > 2 years as recently infected than LAg + VL (1.2% [42/3483 and 1.5% [51/3483], respectively, vs. 0.2% [6/3483]). LAg + BR classified more seroconverters as recently infected than LAg + VL or LAg + PepPair (80 vs. 58 and 50, respectively) and identified ~ 25% of virally suppressed seroconverters as recently infected. CONCLUSIONS: The LAg + VL MAA produced a cross-sectional incidence estimate that was closer to the longitudinal estimate than two MAAs that did not include VL. The LAg + BR MAA classified the greatest number of individual seroconverters as recently infected but had a higher false recent rate.


Subject(s)
HIV Infections , Humans , Cross-Sectional Studies , Incidence , HIV Infections/drug therapy , HIV Infections/epidemiology , Immunoenzyme Techniques , Anti-Retroviral Agents/therapeutic use , Viral Load , Algorithms , Biomarkers
12.
BMC Genomics ; 23(1): 654, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36109689

ABSTRACT

Phage ImmunoPrecipitation Sequencing (PhIP-Seq) is a recently developed technology to assess antibody reactivity, quantifying antibody binding towards hundreds of thousands of candidate epitopes. The output from PhIP-Seq experiments are read count matrices, similar to RNA-Seq data; however some important differences do exist. In this manuscript we investigated whether the publicly available method edgeR (Robinson et al., Bioinformatics 26(1):139-140, 2010) for normalization and analysis of RNA-Seq data is also suitable for PhIP-Seq data. We find that edgeR is remarkably effective, but improvements can be made and introduce a Bayesian framework specifically tailored for data from PhIP-Seq experiments (Bayesian Enrichment Estimation in R, BEER).


Subject(s)
Bacteriophages , Antibodies , Bacteriophages/genetics , Bayes Theorem , Epitopes , Gene Expression Profiling/methods , Immunoprecipitation , Sequence Analysis, RNA/methods
13.
Bioinformatics ; 38(19): 4647-4649, 2022 09 30.
Article in English | MEDLINE | ID: mdl-35959988

ABSTRACT

SUMMARY: Because of their high abundance, easy accessibility in peripheral blood, and relative stability ex vivo, antibodies serve as excellent records of environmental exposures and immune responses. Phage Immuno-Precipitation Sequencing (PhIP-Seq) is the most efficient technique available for assessing antibody binding to hundreds of thousands of peptides at a cohort scale. PhIP-Seq is a high-throughput approach for assessing antibody reactivity to hundreds of thousands of candidate epitopes. Accurate detection of weakly reactive peptides is particularly important for characterizing the development and decline of antibody responses. Here, we present BEER (Bayesian Enrichment Estimation in R), a software package specifically developed for the quantification of peptide reactivity from PhIP-Seq experiments. BEER implements a hierarchical model and produces posterior probabilities for peptide reactivity and a fold change estimate to quantify the magnitude. BEER also offers functionality to infer peptide reactivity based on the edgeR package, though the improvement in speed is offset by slightly lower sensitivity compared to the Bayesian approach, specifically for weakly reactive peptides. AVAILABILITY AND IMPLEMENTATION: BEER is implemented in R and freely available from the Bioconductor repository at https://bioconductor.org/packages/release/bioc/html/beer.html.


Subject(s)
Beer , Software , Humans , Bayes Theorem , Antibodies , Peptides
14.
Immunity ; 55(6): 1051-1066.e4, 2022 06 14.
Article in English | MEDLINE | ID: mdl-35649416

ABSTRACT

Microbial exposures are crucial environmental factors that impact healthspan by sculpting the immune system and microbiota. Antibody profiling via Phage ImmunoPrecipitation Sequencing (PhIP-Seq) provides a high-throughput, cost-effective approach for detecting exposure and response to microbial protein products. We designed and constructed a library of 95,601 56-amino acid peptide tiles spanning 14,430 proteins with "toxin" or "virulence factor" keyword annotations. We used PhIP-Seq to profile the antibodies of ∼1,000 individuals against this "ToxScan" library. In addition to enumerating immunodominant antibody epitopes, we studied the age-dependent stability of the ToxScan profile and used a genome-wide association study to find that the MHC-II locus modulates bacterial epitope selection. We detected previously described anti-flagellin antibody responses in a Crohn's disease cohort and identified an association between anti-flagellin antibodies and juvenile dermatomyositis. PhIP-Seq with the ToxScan library is thus an effective tool for studying the environmental determinants of health and disease at cohort scale.


Subject(s)
Bacteriophages , Peptide Library , Amino Acid Sequence , Antibodies , Antibody Formation , Bacteriophages/genetics , Genome-Wide Association Study , Humans , Immunodominant Epitopes , Prevalence , Virulence Factors/genetics
15.
Am J Hum Genet ; 109(5): 857-870, 2022 05 05.
Article in English | MEDLINE | ID: mdl-35385699

ABSTRACT

While polygenic risk scores (PRSs) enable early identification of genetic risk for chronic obstructive pulmonary disease (COPD), predictive performance is limited when the discovery and target populations are not well matched. Hypothesizing that the biological mechanisms of disease are shared across ancestry groups, we introduce a PrediXcan-derived polygenic transcriptome risk score (PTRS) to improve cross-ethnic portability of risk prediction. We constructed the PTRS using summary statistics from application of PrediXcan on large-scale GWASs of lung function (forced expiratory volume in 1 s [FEV1] and its ratio to forced vital capacity [FEV1/FVC]) in the UK Biobank. We examined prediction performance and cross-ethnic portability of PTRS through smoking-stratified analyses both on 29,381 multi-ethnic participants from TOPMed population/family-based cohorts and on 11,771 multi-ethnic participants from TOPMed COPD-enriched studies. Analyses were carried out for two dichotomous COPD traits (moderate-to-severe and severe COPD) and two quantitative lung function traits (FEV1 and FEV1/FVC). While the proposed PTRS showed weaker associations with disease than PRS for European ancestry, the PTRS showed stronger association with COPD than PRS for African Americans (e.g., odds ratio [OR] = 1.24 [95% confidence interval [CI]: 1.08-1.43] for PTRS versus 1.10 [0.96-1.26] for PRS among heavy smokers with ≥ 40 pack-years of smoking) for moderate-to-severe COPD. Cross-ethnic portability of the PTRS was significantly higher than the PRS (paired t test p < 2.2 × 10-16 with portability gains ranging from 5% to 28%) for both dichotomous COPD traits and across all smoking strata. Our study demonstrates the value of PTRS for improved cross-ethnic portability compared to PRS in predicting COPD risk.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Transcriptome , Humans , Lung , National Heart, Lung, and Blood Institute (U.S.) , Pulmonary Disease, Chronic Obstructive/genetics , Risk Factors , United States/epidemiology
16.
Genet Epidemiol ; 46(3-4): 170-181, 2022 04.
Article in English | MEDLINE | ID: mdl-35312098

ABSTRACT

Genome-wide association studies (GWAS) have successfully identified thousands of single nucleotide polymorphisms (SNPs) associated with complex traits; however, the identified SNPs account for a fraction of trait heritability, and identifying the functional elements through which genetic variants exert their effects remains a challenge. Recent evidence suggests that SNPs associated with complex traits are more likely to be expression quantitative trait loci (eQTL). Thus, incorporating eQTL information can potentially improve power to detect causal variants missed by traditional GWAS approaches. Using genomic, transcriptomic, and platelet phenotype data from the Genetic Study of Atherosclerosis Risk family-based study, we investigated the potential to detect novel genomic risk loci by incorporating information from eQTL in the relevant target tissues (i.e., platelets and megakaryocytes) using established statistical principles in a novel way. Permutation analyses were performed to obtain family-wise error rates for eQTL associations, substantially lowering the genome-wide significance threshold for SNP-phenotype associations. In addition to confirming the well known association between PEAR1 and platelet aggregation, our eQTL-focused approach identified a novel locus (rs1354034) and gene (ARHGEF3) not previously identified in a GWAS of platelet aggregation phenotypes. A colocalization analysis showed strong evidence for a functional role of this eQTL.


Subject(s)
Genome-Wide Association Study , Quantitative Trait Loci , Humans , Phenotype , Polymorphism, Single Nucleotide , Quantitative Trait Loci/genetics , Receptors, Cell Surface , Transcriptome
17.
J Clin Invest ; 132(1)2022 01 04.
Article in English | MEDLINE | ID: mdl-34981778

ABSTRACT

We investigated the interplay between genetics and oral peanut protein exposure in the determination of the immunological response to peanut using the targeted intervention in the LEAP clinical trial. We identified an association between peanut-specific IgG4 and HLA-DQA1*01:02 that was only observed in the presence of sustained oral peanut protein exposure. The association between IgG4 and HLA-DQA1*01:02 was driven by IgG4 specific for the Ara h 2 component. Once peanut consumption ceased, the association between IgG4-specific Ara h 2 and HLA-DQA1*01:02 was attenuated. The association was validated by observing expanded IgG4-specific epitopes in people who carried HLA-DQA1*01:02. Notably, we confirmed the previously reported associations with HLA-DQA1*01:02 and peanut allergy risk in the absence of oral peanut protein exposure. Interaction between HLA and presence or absence of exposure to peanut in an allergen- and epitope-specific manner implicates a mechanism of antigen recognition that is fundamental to driving immune responses related to allergy risk or protection.


Subject(s)
2S Albumins, Plant/immunology , Alleles , Antibody Formation , Antigens, Plant/immunology , Arachis , HLA-DQ alpha-Chains , Immunoglobulin G/immunology , Peanut Hypersensitivity , Antibody Formation/genetics , Antibody Formation/immunology , Child , Female , HLA-DQ alpha-Chains/genetics , HLA-DQ alpha-Chains/immunology , Humans , Male , Peanut Hypersensitivity/genetics , Peanut Hypersensitivity/immunology
18.
Proteomics ; 22(3): e2100033, 2022 02.
Article in English | MEDLINE | ID: mdl-34668656

ABSTRACT

Technical variation, or variation from non-biological sources, is present in most laboratory assays. Correcting for this variation enables analysts to extract a biological signal that informs questions of interest. However, each assay has different sources and levels of technical variation, and the choice of correction methods can impact downstream analyses. Compared to similar assays such as DNA microarrays, relatively few methods have been developed and evaluated for protein microarrays, a versatile tool for measuring levels of various proteins in serum samples. Here, we propose a pre-processing pipeline to correct for some common sources of technical variation in protein microarrays. The pipeline builds upon an existing normalization method by using controls to reduce technical variation. We evaluate our method using data from two protein microarray studies and by simulation. We demonstrate that pre-processing choices impact the fluorescent-intensity based ranks of proteins, which in turn, impact downstream analysis.


Subject(s)
Gene Expression Profiling , Protein Array Analysis , Computer Simulation , Gene Expression Profiling/methods , Oligonucleotide Array Sequence Analysis/methods
19.
Front Immunol ; 12: 740395, 2021.
Article in English | MEDLINE | ID: mdl-34512672

ABSTRACT

Introduction: Low HIV viral load is associated with delayed disease progression and reduced HIV transmission. HIV controllers suppress viral load to low levels in the absence of antiretroviral treatment (ART). We used an antibody profiling system, VirScan, to compare antibody reactivity and specificity in HIV controllers, non-controllers with treatment-induced viral suppression, and viremic non-controllers. Methods: The VirScan library contains 3,384 phage-displayed peptides spanning the HIV proteome. Antibody reactivity to these peptides was measured in plasma from a Discovery Cohort that included 13 elite controllers, 27 viremic controllers, 12 viremic non-controllers, and 21 non-controllers who were virally suppressed on ART. Antibody reactivity to selected peptides was also assessed in an independent cohort of 29 elite controllers and 37 non-controllers who were virally suppressed on ART (Validation Cohort) and in a longitudinal cohort of non-controllers. Results: In the Discovery Cohort, 62 peptides were preferentially targeted in HIV controllers compared to non-controllers who were virally suppressed on ART. These specificities were not significantly different when comparing controllers versus viremic non-controllers. Aggregate reactivity to these peptides was also high in elite controllers from the independent Validation Cohort. The 62 peptides formed seven clusters of homologous epitopes in env, gag, integrase, and vpu. Reactivity to one of these clusters located in gag p17 was inversely correlated with viral load set point in an independent cohort of non-controllers. Conclusions: Antibody reactivity was low in non-controllers suppressed on ART, but remained high in viremic controllers despite viral suppression. Antibodies in controllers and viremic non-controllers were directed against epitopes in diverse HIV proteins; higher reactivity against p17 peptides was associated with lower viral load set point. Further studies are needed to determine if these antibodies play a role in regulation of HIV viral load.


Subject(s)
HIV Antibodies/immunology , HIV Infections/immunology , HIV Non-Progressors , HIV-1/physiology , Adult , Anti-Retroviral Agents/therapeutic use , Epitope Mapping , Epitopes/genetics , Epitopes/immunology , Female , HIV Antigens/genetics , HIV Antigens/immunology , HIV Infections/drug therapy , Humans , Male , Peptide Library , Viral Load , Young Adult , gag Gene Products, Human Immunodeficiency Virus/genetics , gag Gene Products, Human Immunodeficiency Virus/immunology
20.
J Allergy Clin Immunol ; 148(6): 1589-1595, 2021 12.
Article in English | MEDLINE | ID: mdl-34536413

ABSTRACT

BACKGROUND: Total serum IgE (tIgE) is an important intermediate phenotype of allergic disease. Whole genome genetic association studies across ancestries may identify important determinants of IgE. OBJECTIVE: We aimed to increase understanding of genetic variants affecting tIgE production across the ancestry and allergic disease spectrum by leveraging data from the National Heart, Lung and Blood Institute Trans-Omics for Precision Medicine program; the Consortium on Asthma among African-ancestry Populations in the Americas (CAAPA); and the Atopic Dermatitis Research Network (N = 21,901). METHODS: We performed genome-wide association within strata of study, disease, and ancestry groups, and we combined results via a meta-regression approach that models heterogeneity attributable to ancestry. We also tested for association between HLA alleles called from whole genome sequence data and tIgE, assessing replication of associations in HLA alleles called from genotype array data. RESULTS: We identified 6 loci at genome-wide significance (P < 5 × 10-9), including 4 loci previously reported as genome-wide significant for tIgE, as well as new regions in chr11q13.5 and chr15q22.2, which were also identified in prior genome-wide association studies of atopic dermatitis and asthma. In the HLA allele association study, HLA-A∗02:01 was associated with decreased tIgE level (Pdiscovery = 2 × 10-4; Preplication = 5 × 10-4; Pdiscovery+replication = 4 × 10-7), and HLA-DQB1∗03:02 was strongly associated with decreased tIgE level in Hispanic/Latino ancestry populations (PHispanic/Latino discovery+replication = 8 × 10-8). CONCLUSION: We performed the largest genome-wide association study and HLA association study of tIgE focused on ancestrally diverse populations and found several known tIgE and allergic disease loci that are relevant in non-European ancestry populations.


Subject(s)
Asthma/genetics , Dermatitis, Atopic/genetics , Ethnicity , Genotype , HLA-A2 Antigen/genetics , HLA-DQ beta-Chains/genetics , Adolescent , Adult , Aged , Child , Child, Preschool , Female , Gene Frequency , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Immunoglobulin E/blood , Male , Middle Aged , National Heart, Lung, and Blood Institute (U.S.) , United States , Whole Genome Sequencing , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL