Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters










Publication year range
1.
Molecules ; 29(2)2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38257233

ABSTRACT

Effective therapeutics for Alzheimer's disease (AD) are in great demand worldwide. In our previous work, we responded to this need by synthesizing novel drug candidates consisting of 4-amino-2,3-polymethylenequinolines conjugated with butylated hydroxytoluene via fixed-length alkylimine or alkylamine linkers (spacers) and studying their bioactivities pertaining to AD treatment. Here, we report significant extensions of these studies, including the use of variable-length spacers and more detailed biological characterizations. Conjugates were potent inhibitors of acetylcholinesterase (AChE, the most active was 17d IC50 15.1 ± 0.2 nM) and butyrylcholinesterase (BChE, the most active was 18d: IC50 5.96 ± 0.58 nM), with weak inhibition of off-target carboxylesterase. Conjugates with alkylamine spacers were more effective cholinesterase inhibitors than alkylimine analogs. Optimal inhibition for AChE was exhibited by cyclohexaquinoline and for BChE by cycloheptaquinoline. Increasing spacer length elevated the potency against both cholinesterases. Structure-activity relationships agreed with docking results. Mixed-type reversible AChE inhibition, dual docking to catalytic and peripheral anionic sites, and propidium iodide displacement suggested the potential of hybrids to block AChE-induced ß-amyloid (Aß) aggregation. Hybrids also exhibited the inhibition of Aß self-aggregation in the thioflavin test; those with a hexaquinoline ring and C8 spacer were the most active. Conjugates demonstrated high antioxidant activity in ABTS and FRAP assays as well as the inhibition of luminol chemiluminescence and lipid peroxidation in mouse brain homogenates. Quantum-chemical calculations explained antioxidant results. Computed ADMET profiles indicated favorable blood-brain barrier permeability, suggesting the CNS activity potential. Thus, the conjugates could be considered promising multifunctional agents for the potential treatment of AD.


Subject(s)
Alzheimer Disease , Cholinesterase Inhibitors , Animals , Mice , Cholinesterase Inhibitors/pharmacology , Antioxidants/pharmacology , Alzheimer Disease/drug therapy , Butyrylcholinesterase , Acetylcholinesterase , Pharmacophore
2.
Arch Pharm (Weinheim) ; 357(2): e2300447, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38072670

ABSTRACT

New amiridine-thiouracil conjugates with different substituents in the pyrimidine fragment (R = CH3 , CF2 Н, CF3 , (CF2 )2 H) and different spacer lengths (n = 1-3) were synthesized. The conjugates rather weakly inhibit acetylcholinesterase (AChE) and exhibit high inhibitory activity (IC50 up to 0.752 ± 0.021 µM) and selectivity to butyrylcholinesterase (BChE), which increases with spacer elongation; the lead compounds are 11c, 12c, and 13c. The conjugates are mixed-type reversible inhibitors of both cholinesterases and practically do not inhibit the structurally related off-target enzyme carboxylesterase. The results of molecular docking to AChE and BChE are consistent with the experiment on enzyme inhibition and explain the structure-activity relationships, including the rather low anti-AChE activity and the high anti-BChE activity of long-chain conjugates. The lead compounds displace propidium from the AChE peripheral anion site (PAS) at the level of the reference compound donepezil, which agrees with the mixed-type mechanism of AChE inhibition and the main mode of binding of conjugates in the active site of AChE due to the interaction of the pyrimidine moiety with the PAS. This indicates the ability of the studied conjugates to block AChE-induced aggregation of ß-amyloid, thereby exerting a disease-modifying effect. According to computer calculations, all synthesized conjugates have an ADME profile acceptable for drugs.


Subject(s)
Alzheimer Disease , Aminoquinolines , Butyrylcholinesterase , Humans , Butyrylcholinesterase/metabolism , Acetylcholinesterase/metabolism , Molecular Docking Simulation , Structure-Activity Relationship , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemistry , Amyloid beta-Peptides/metabolism , Pyrimidines
3.
Front Pharmacol ; 14: 1219980, 2023.
Article in English | MEDLINE | ID: mdl-37654616

ABSTRACT

We investigated the inhibitory activities of novel 9-phosphoryl-9,10-dihydroacridines and 9-phosphorylacridines against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and carboxylesterase (CES). We also studied the abilities of the new compounds to interfere with the self-aggregation of ß-amyloid (Aß42) in the thioflavin test as well as their antioxidant activities in the ABTS and FRAP assays. We used molecular docking, molecular dynamics simulations, and quantum-chemical calculations to explain experimental results. All new compounds weakly inhibited AChE and off-target CES. Dihydroacridines with aryl substituents in the phosphoryl moiety inhibited BChE; the most active were the dibenzyloxy derivative 1d and its diphenethyl bioisostere 1e (IC50 = 2.90 ± 0.23 µM and 3.22 ± 0.25 µM, respectively). Only one acridine, 2d, an analog of dihydroacridine, 1d, was an effective BChE inhibitor (IC50 = 6.90 ± 0.55 µM), consistent with docking results. Dihydroacridines inhibited Aß42 self-aggregation; 1d and 1e were the most active (58.9% ± 4.7% and 46.9% ± 4.2%, respectively). All dihydroacridines 1 demonstrated high ABTS•+-scavenging and iron-reducing activities comparable to Trolox, but acridines 2 were almost inactive. Observed features were well explained by quantum-chemical calculations. ADMET parameters calculated for all compounds predicted favorable intestinal absorption, good blood-brain barrier permeability, and low cardiac toxicity. Overall, the best results were obtained for two dihydroacridine derivatives 1d and 1e with dibenzyloxy and diphenethyl substituents in the phosphoryl moiety. These compounds displayed high inhibition of BChE activity and Aß42 self-aggregation, high antioxidant activity, and favorable predicted ADMET profiles. Therefore, we consider 1d and 1e as lead compounds for further in-depth studies as potential anti-AD preparations.

4.
J Membr Biol ; 256(3): 257-269, 2023 06.
Article in English | MEDLINE | ID: mdl-36995425

ABSTRACT

The L-type calcium current (ICaL) is the first step in cardiac excitation-contraction-coupling and plays an important role in regulating contractility, but also in electrical and mechanical remodeling. Primary culture of cardiomyocytes, a widely used tool in cardiac ion channel research, is associated with substantial morphological, functional and electrical changes some of which may be prevented by electrical pacing. We therefore investigated ICaL directly after cell isolation and after 24 h of primary culture with and without regular pacing at 1 and 3 Hz in rat left ventricular myocytes. Moreover, we analyzed total mRNA expression of the pore forming subunit of the L-type Ca2+ channel (cacna1c) as well as the expression of splice variants of its exon 1 that contribute to specificity of ICaL in different tissue such as cardiac myocytes or smooth muscle. 24 h incubation without pacing decreased ICaL density by ~ 10% only. Consistent with this decrease we observed a decrease in the expression of total cacna1c and of exon 1a, the dominant variant of cardiomyocytes, while expression of exon 1b and 1c increased. Pacing for 24 h at 1 and 3 Hz led to a substantial decrease in ICaL density by 30%, mildly slowed ICaL inactivation and shifted steady-state inactivation to more negative potentials. Total cacna1c mRNA expression was substantially decreased by pacing, as was the expression of exon 1b and 1c. Taken together, electrical silence introduces fewer alterations in ICaL density and cacna1c mRNA expression than pacing for 24 h and should therefore be the preferred approach for primary culture of cardiomyocytes.


Subject(s)
Heart Ventricles , Myocytes, Cardiac , Rats , Animals , Myocytes, Cardiac/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Calcium Channels, L-Type/genetics , Calcium Channels, L-Type/metabolism
5.
Int J Mol Sci ; 24(3)2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36768608

ABSTRACT

A series of previously synthesized conjugates of tacrine and salicylamide was extended by varying the structure of the salicylamide fragment and using salicylic aldehyde to synthesize salicylimine derivatives. The hybrids exhibited broad-spectrum biological activity. All new conjugates were potent inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with selectivity toward BChE. The structure of the salicylamide moiety exerted little effect on anticholinesterase activity, but AChE inhibition increased with spacer elongation. The most active conjugates were salicylimine derivatives: IC50 values of the lead compound 10c were 0.0826 µM (AChE) and 0.0156 µM (BChE), with weak inhibition of the off-target carboxylesterase. The hybrids were mixed-type reversible inhibitors of both cholinesterases and displayed dual binding to the catalytic and peripheral anionic sites of AChE in molecular docking, which, along with experimental results on propidium iodide displacement, suggested their potential to block AChE-induced ß-amyloid aggregation. All conjugates inhibited Aß42 self-aggregation in the thioflavin test, and inhibition increased with spacer elongation. Salicylimine 10c and salicylamide 5c with (CH2)8 spacers were the lead compounds for inhibiting Aß42 self-aggregation, which was corroborated by molecular docking to Aß42. ABTS•+-scavenging activity was highest for salicylamides 5a-c, intermediate for salicylimines 10a-c, low for F-containing salicylamides 7, and non-existent for methoxybenzoylamides 6 and difluoromethoxybenzoylamides 8. In the FRAP antioxidant (AO) assay, the test compounds displayed little or no activity. Quantum chemical analysis and molecular dynamics (MD) simulations with QM/MM potentials explained the AO structure-activity relationships. All conjugates were effective chelators of Cu2+, Fe2+, and Zn2+, with molar compound/metal (Cu2+) ratios of 2:1 (5b) and ~1:1 (10b). Conjugates exerted comparable or lower cytotoxicity than tacrine on mouse hepatocytes and had favorable predicted intestinal absorption and blood-brain barrier permeability. The overall results indicate that the synthesized conjugates are promising new multifunctional agents for the potential treatment of AD.


Subject(s)
Alzheimer Disease , Tacrine , Animals , Mice , Acetylcholinesterase/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Antioxidants/pharmacology , Butyrylcholinesterase/metabolism , Cholinesterase Inhibitors/chemistry , Molecular Docking Simulation , Salicylamides , Structure-Activity Relationship , Tacrine/pharmacology , Tacrine/chemistry , Salicylic Acid/chemistry
6.
Int J Mol Sci ; 23(22)2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36430413

ABSTRACT

The development of multi-target-directed ligands (MTDLs) would provide effective therapy of neurodegenerative diseases (ND) with complex and nonclear pathogenesis. A promising method to create such potential drugs is combining neuroactive pharmacophoric groups acting on different biotargets involved in the pathogenesis of ND. We developed a synthetic algorithm for the conjugation of indole derivatives and methylene blue (MB), which are pharmacophoric ligands that act on the key stages of pathogenesis. We synthesized hybrid structures and performed a comprehensive screening for a specific set of biotargets participating in the pathogenesis of ND (i.e., cholinesterases, NMDA receptor, mitochondria, and microtubules assembly). The results of the screening study enabled us to find two lead compounds (4h and 4i) which effectively inhibited cholinesterases and bound to the AChE PAS, possessed antioxidant activity, and stimulated the assembly of microtubules. One of them (4i) exhibited activity as a ligand for the ifenprodil-specific site of the NMDA receptor. In addition, this lead compound was able to bypass the inhibition of complex I and prevent calcium-induced mitochondrial depolarization, suggesting a neuroprotective property that was confirmed using a cellular calcium overload model of neurodegeneration. Thus, these new MB-cycloalkaneindole conjugates constitute a promising class of compounds for the development of multitarget neuroprotective drugs which simultaneously act on several targets, thereby providing cognitive stimulating, neuroprotective, and disease-modifying effects.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Humans , Neurodegenerative Diseases/drug therapy , Cholinesterase Inhibitors/pharmacology , Methylene Blue/pharmacology , Ligands , Alzheimer Disease/metabolism , Receptors, N-Methyl-D-Aspartate , Calcium/metabolism , Cholinesterases/metabolism
7.
Molecules ; 27(22)2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36431823

ABSTRACT

One of the powerful antioxidants used clinically is Edaravone (EDA). We synthesized a series of new EDA analogs, 4-aminopyrazol-5-ol hydrochlorides, including polyfluoroalkyl derivatives, via the reduction of 4-hydroxyiminopyrazol-5-ones. The primary antioxidant activity of the compounds in comparison with EDA was investigated in vitro using ABTS, FRAP, and ORAC tests. In all tests, 4-Amino-3-pyrazol-5-ols were effective. The lead compound, 4-amino-3-methyl-1-phenylpyrazol-5-ol hydrochloride (APH), showed the following activities: ABTS, 0.93 TEAC; FRAP, 0.98 TE; and ORAC, 4.39 TE. APH and its NH-analog were not cytotoxic against cultured normal human fibroblasts even at 100 µM, in contrast to EDA. According to QM calculations, 4-aminopyrazolols were characterized by lower gaps, IP, and η compared to 4-hydroxyiminopyrazol-5-ones, consistent with their higher antioxidant activities in ABTS and FRAP tests, realized by the SET mechanism. The radical-scavenging action evaluated in the ORAC test occurred by the HAT mechanism through OH bond breaking in all compounds, directly dependent on the dissociation energy of the OH bond. All the studied compounds demonstrated the absence of anticholinesterase activity and moderate inhibition of CES by some 4-aminopyrazolols. Thus, the lead compound APH was found to be a good antioxidant with the potential to be developed as a novel therapeutic drug candidate in the treatment of diseases associated with oxidative stress.


Subject(s)
Antioxidants , Cholinesterase Inhibitors , Humans , Antioxidants/chemistry , Edaravone
8.
Biomolecules ; 12(11)2022 10 24.
Article in English | MEDLINE | ID: mdl-36358901

ABSTRACT

Alzheimer's disease (AD) is considered a modern epidemic because of its increasing prevalence worldwide and serious medico-social consequences, including the economic burden of treatment and patient care. The development of new effective therapeutic agents for AD is one of the most urgent and challenging tasks. To address this need, we used an aminoalkylene linker to combine the well-known anticholinesterase drug tacrine with antioxidant 2-tolylhydrazinylidene-1,3-diketones to create 3 groups of hybrid compounds as new multifunctional agents with the potential for AD treatment. Lead compounds of the new conjugates effectively inhibited acetylcholinesterase (AChE, IC50 0.24-0.34 µM) and butyrylcholinesterase (BChE, IC50 0.036-0.0745 µM), with weak inhibition of off-target carboxylesterase. Anti-AChE activity increased with elongation of the alkylene spacer, in agreement with molecular docking, which showed compounds binding to both the catalytic active site and peripheral anionic site (PAS) of AChE, consistent with mixed type reversible inhibition. PAS binding along with effective propidium displacement suggest the potential of the hybrids to block AChE-induced ß-amyloid aggregation, a disease-modifying effect. All of the conjugates demonstrated metal chelating ability for Cu2+, Fe2+, and Zn2+, as well as high antiradical activity in the ABTS test. Non-fluorinated hybrid compounds 6 and 7 also showed Fe3+ reducing activity in the FRAP test. Predicted ADMET and physicochemical properties of conjugates indicated good CNS bioavailability and safety parameters acceptable for potential lead compounds at the early stages of anti-AD drug development.


Subject(s)
Alzheimer Disease , Neuroprotective Agents , Humans , Tacrine/pharmacology , Tacrine/chemistry , Butyrylcholinesterase/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Acetylcholinesterase/metabolism , Molecular Docking Simulation , Cholinesterase Inhibitors/chemistry , Amyloid beta-Peptides/metabolism , Neuroprotective Agents/therapeutic use
9.
Anal Chim Acta ; 1221: 340140, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35934372

ABSTRACT

Phosphorylated adenosine derivatives are important biological molecules with diverse biological functions connected with the energetic balance of the cell, biosynthesis of cell components and regulation of protein activity. Measurement of these compounds provides information about the cell signalling in the body as well as the quantity of microorganisms in the environment. Surface-enhanced Raman spectroscopy (SERS) is an optical method that provides a unique spectrum of a substance at low concentrations. Specificity and limit of detection of SERS-based sensors can be increased drastically using nucleic acid aptamers and Raman-active dyes, respectively. Here we describe an adenosine monophosphate (AMP) biosensor based on AMP-dependent interaction between the well-known DNA aptamer for AMP and a novel Raman-active dye. The SERS intensity of novel Black Hole Quencher-2 (BHQ-2) derivatives was shown to be proportional to the charge of the molecule indicating electrostatic interactions with negatively charged colloidal silver nanoparticles. The novel derivative of BHQ-2 with two amine groups, BHQ-2-(NH2)2, binds an unpaired guanine stacked between guanine-guanine and guanine-adenine mismatches in DNA aptamer-AMP complex with KD = 26 nM as shown by 1H nuclear magnetic resonance, molecular docking and biolayer interferometry. The aptamer is pre-structured by AMP being folded in the conformation favorable for the interaction with BHQ-2-(NH2)2. This specific mechanism of the interaction allows designing of a SERS-based aptasensor with a limit of detection being as low as 3.4 nM of AMP and the dynamic range of nearly 5 orders - from 3.4 nM to 200 µM. The results illustrate a new approach to biosensors where DNA-interacting ligands act as external responsive elements providing an analyte-dependent SERS signal.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Metal Nanoparticles , Adenosine Monophosphate , Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , Gold/chemistry , Guanine , Metal Nanoparticles/chemistry , Molecular Docking Simulation , Silver/chemistry , Spectrum Analysis, Raman/methods
10.
Front Chem ; 10: 937180, 2022.
Article in English | MEDLINE | ID: mdl-35844641

ABSTRACT

Biosensors combining the ultrahigh sensitivity of surface-enhanced Raman scattering (SERS) and the specificity of nucleic acid aptamers have recently drawn attention in the detection of respiratory viruses. The most sensitive SERS-based aptasensors allow determining as low as 104 virus particles per mL that is 100-fold lower than any antibody-based lateral flow tests but 10-100-times higher than a routine polymerase chain reaction with reversed transcription (RT-PCR). Sensitivity of RT-PCR has not been achieved in SERS-based aptasensors despite the usage of sophisticated SERS-active substrates. Here, we proposed a novel design of a SERS-based aptasensor with the limit of detection of just 103 particles per ml of the influenza A virus that approaches closely to RT-PCR sensitivity. The sensor utilizes silver nanoparticles with the simplest preparation instead of sophisticated SERS-active surfaces. The analytical signal is provided by a unique Raman-active dye that competes with the virus for the binding to the G-quadruplex core of the aptamer. The aptasensor functions even with aliquots of the biological fluids due to separation of the off-target molecules by pre-filtration through a polymeric membrane. The aptasensor detects influenza viruses in the range of 1·103-5·1010 virus particles per ml.

11.
ChemMedChem ; 17(10): e202200080, 2022 05 18.
Article in English | MEDLINE | ID: mdl-35322571

ABSTRACT

New conjugates of tacrine and salicylamide with alkylene spacers were synthesized and evaluated as potential multifunctional agents for Alzheimer's disease (AD). The compounds exhibited high acetylcholinesterase (AChE, IC50 to 0.224 µM) and butyrylcholinesterase (BChE, IC50 to 0.0104 µM) inhibitory activities. They were also rather poor inhibitors of carboxylesterase, suggesting a low tendency to exert potential unwanted drug-drug interactions in clinical use. The conjugates were mixed-type reversible inhibitors of both cholinesterases and demonstrated dual binding to the catalytic and peripheral anionic sites of AChE in molecular docking that, along with experimental results on propidium iodide displacement, suggest their potential to block AChE-induced ß-amyloid aggregation. The new conjugates exhibited high ABTS.+ -scavenging activity. N-(6-(1,2,3,4-Tetrahydroacridin-9-ylamino)hexyl)salicylamide is a lead compound that also demonstrates metal chelating ability toward Cu2+ , Fe2+ and Zn2+ . Thus, the new conjugates have displayed the potential to be multifunctional anti-AD agents for further development.


Subject(s)
Alzheimer Disease , Neuroprotective Agents , Acetylcholinesterase/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Amyloid beta-Peptides , Butyrylcholinesterase/metabolism , Cholinesterase Inhibitors/chemistry , Humans , Molecular Docking Simulation , Neuroprotective Agents/pharmacology , Salicylamides/therapeutic use , Structure-Activity Relationship , Tacrine/chemistry
12.
Molecules ; 27(3)2022 Feb 04.
Article in English | MEDLINE | ID: mdl-35164325

ABSTRACT

Using two ways of functionalizing amiridine-acylation with chloroacetic acid chloride and reaction with thiophosgene-we have synthesized new homobivalent bis-amiridines joined by two different spacers-bis-N-acyl-alkylene (3) and bis-N-thiourea-alkylene (5) -as potential multifunctional agents for the treatment of Alzheimer's disease (AD). All compounds exhibited high inhibitory activity against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with selectivity for BChE. These new agents displayed negligible carboxylesterase inhibition, suggesting a probable lack of untoward drug-drug interactions arising from hydrolytic biotransformation. Compounds 3 with bis-N-acyl-alkylene spacers were more potent inhibitors of both cholinesterases compared to compounds 5 and the parent amiridine. The lead compounds 3a-c exhibited an IC50(AChE) = 2.9-1.4 µM, IC50(BChE) = 0.13-0.067 µM, and 14-18% propidium displacement at 20 µM. Kinetic studies of compounds 3a and 5d indicated mixed-type reversible inhibition. Molecular docking revealed favorable poses in both catalytic and peripheral AChE sites. Propidium displacement from the peripheral site by the hybrids suggests their potential to hinder AChE-assisted Aß42 aggregation. Conjugates 3 had no effect on Aß42 self-aggregation, whereas compounds 5c-e (m = 4, 5, 6) showed mild (13-17%) inhibition. The greatest difference between conjugates 3 and 5 was their antioxidant activity. Bis-amiridines 3 with N-acylalkylene spacers were nearly inactive in ABTS and FRAP tests, whereas compounds 5 with thiourea in the spacers demonstrated high antioxidant activity, especially in the ABTS test (TEAC = 1.2-2.1), in agreement with their significantly lower HOMO-LUMO gap values. Calculated ADMET parameters for all conjugates predicted favorable blood-brain barrier permeability and intestinal absorption, as well as a low propensity for cardiac toxicity. Thus, it was possible to obtain amiridine derivatives whose potencies against AChE and BChE equaled (5) or exceeded (3) that of the parent compound, amiridine. Overall, based on their expanded and balanced pharmacological profiles, conjugates 5c-e appear promising for future optimization and development as multitarget anti-AD agents.


Subject(s)
Alzheimer Disease/drug therapy , Aminoquinolines/chemistry , Antioxidants/pharmacology , Butyrylcholinesterase/chemistry , Cholinesterase Inhibitors/pharmacology , Neuroprotective Agents/pharmacology , Acetylcholinesterase , Antioxidants/chemistry , Cholinesterase Inhibitors/chemistry , GPI-Linked Proteins/antagonists & inhibitors , Humans , Kinetics , Models, Molecular , Molecular Docking Simulation , Molecular Structure , Neuroprotective Agents/chemistry , Structure-Activity Relationship
13.
Molecules ; 28(1)2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36615256

ABSTRACT

4-Arylhydrazinylidene-5-(polyfluoroalkyl)pyrazol-3-ones (4-AHPs) were found to be obtained by the regiospecific cyclization of 2-arylhydrazinylidene-3-(polyfluoroalkyl)-3-oxoesters with hydrazines, by the azo coupling of 4-nonsubstituted pyrazol-5-oles with aryldiazonium chlorides or by the firstly discovered acid-promoted self-condensation of 2-arylhydrazinylidene-3-oxoesters. All the 4-AHPs had an acceptable ADME profile. Varying the substituents in 4-AHPs promoted the switching or combining of their biological activity. The polyfluoroalkyl residue in 4-AHPs led to the appearance of an anticarboxylesterase action in the micromolar range. An NH-fragment and/or methyl group instead of the polyfluoroalkyl one in the 4-AHPs promoted antioxidant properties in the ABTS, FRAP and ORAC tests, as well as anti-cancer activity against HeLa that was at the Doxorubicin level coupled with lower cytotoxicity against normal human fibroblasts. Some Ph-N-substituted 4-AHPs could inhibit the growth of N. gonorrhoeae bacteria at MIC 0.9 µg/mL. The possibility of using 4-AHPs for cell visualization was shown. Most of the 4-AHPs exhibited a pronounced analgesic effect in a hot plate test in vivo at and above the diclofenac and metamizole levels except for the ones with two chlorine atoms in the aryl group. The methylsulfonyl residue was proved to raise the anti-inflammatory effect also. A mechanism of the antinociceptive action of the 4-AHPs through blocking the TRPV1 receptor was proposed and confirmed using in vitro experiment and molecular docking.


Subject(s)
Antioxidants , Diclofenac , Humans , Molecular Docking Simulation , Antioxidants/chemistry , Pharmaceutical Preparations
14.
Molecules ; 26(18)2021 Sep 11.
Article in English | MEDLINE | ID: mdl-34576998

ABSTRACT

A new series of conjugates of aminoadamantane and γ-carboline, which are basic scaffolds of the known neuroactive agents, memantine and dimebon (Latrepirdine) was synthesized and characterized. Conjugates act simultaneously on several biological structures and processes involved in the pathogenesis of Alzheimer's disease and some other neurodegenerative disorders. In particular, these compounds inhibit enzymes of the cholinesterase family, exhibiting higher inhibitory activity against butyrylcholinesterase (BChE), but having almost no effect on the activity of carboxylesterase (anti-target). The compounds serve as NMDA-subtype glutamate receptor ligands, show mitoprotective properties by preventing opening of the mitochondrial permeability transition (MPT) pore, and act as microtubule stabilizers, stimulating the polymerization of tubulin and microtubule-associated proteins. Structure-activity relationships were studied, with particular attention to the effect of the spacer on biological activity. The synthesized conjugates showed new properties compared to their prototypes (memantine and dimebon), including the ability to bind to the ifenprodil-binding site of the NMDA receptor and to occupy the peripheral anionic site of acetylcholinesterase (AChE), which indicates that these compounds can act as blockers of AChE-induced ß-amyloid aggregation. These new attributes of the conjugates represent improvements to the pharmacological profiles of the separate components by conferring the potential to act as neuroprotectants and cognition enhancers with a multifunctional mode of action.


Subject(s)
Amantadine/chemistry , Amantadine/pharmacology , Carbolines/chemistry , Carbolines/pharmacology , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/pharmacology , Acetylcholinesterase/chemistry , Amantadine/analogs & derivatives , Animals , Butyrylcholinesterase/chemistry , Carboxylesterase/chemistry , Catalytic Domain , Cell Line , Cholinesterase Inhibitors/chemical synthesis , Horses , Humans , Kinetics , Ligands , Memantine/chemistry , Memantine/pharmacology , Mitochondrial Transmembrane Permeability-Driven Necrosis/drug effects , Molecular Docking Simulation , Propidium/chemistry , Rats , Receptors, N-Methyl-D-Aspartate/chemistry , Receptors, N-Methyl-D-Aspartate/metabolism , Structure-Activity Relationship , Swine , Tubulin/drug effects , Tubulin Modulators/chemical synthesis , Tubulin Modulators/chemistry , Tubulin Modulators/pharmacology
15.
Nanomaterials (Basel) ; 11(6)2021 May 25.
Article in English | MEDLINE | ID: mdl-34070421

ABSTRACT

During the COVID-19 pandemic, the development of sensitive and rapid techniques for detection of viruses have become vital. Surface-enhanced Raman scattering (SERS) is an appropriate tool for new techniques due to its high sensitivity. SERS materials modified with short-structured oligonucleotides (DNA aptamers) provide specificity for SERS biosensors. Existing SERS-based aptasensors for rapid virus detection are either inapplicable for quantitative determination or have sophisticated and expensive construction and implementation. In this paper, we provide a SERS-aptasensor based on colloidal solutions which combines rapidity and specificity in quantitative determination of SARS-CoV-2 virus, discriminating it from the other respiratory viruses.

16.
Bioorg Chem ; 112: 104974, 2021 07.
Article in English | MEDLINE | ID: mdl-34029971

ABSTRACT

We synthesized eleven new amiridine-piperazine hybrids 5a-j and 7 as potential multifunctional agents for Alzheimer's disease (AD) treatment by reacting N-chloroacetylamiridine with piperazines. The compounds displayed mixed-type reversible inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Conjugates were moderate inhibitors of equine and human BChE with negligible fluctuation in anti-BChE activity, whereas anti-AChE activity was substantially dependent on N4-substitution of the piperazine ring. Compounds with para-substituted aromatic moieties (5g, 5h, and bis-amiridine 7) had the highest anti-AChE activity in the low micromolar range. Top-ranked compound 5h, N-(2,3,5,6,7,8-hexahydro-1H-cyclopenta[b]quinolin-9-yl)-2-[4-(4-nitro-phenyl)-piperazin-1-yl]-acetamide, had an IC50 for AChE = 1.83 ± 0.03 µM (Ki = 1.50 ± 0.12 and αKi = 2.58 ± 0.23 µM). The conjugates possessed low activity against carboxylesterase, indicating a likely absence of unwanted drug-drug interactions in clinical use. In agreement with analysis of inhibition kinetics and molecular modeling studies, the lead compounds were found to bind effectively to the peripheral anionic site of AChE and displace propidium, indicating their potential to block AChE-induced ß-amyloid aggregation. Similar propidium displacement activity was first shown for amiridine. Two compounds, 5c (R = cyclohexyl) and 5e (R = 2-MeO-Ph), exhibited appreciable antioxidant capability with Trolox equivalent antioxidant capacity values of 0.47 ± 0.03 and 0.39 ± 0.02, respectively. Molecular docking and molecular dynamics simulations provided insights into the structure-activity relationships for AChE and BChE inhibition, including the observation that inhibitory potencies and computed pKa values of hybrids were generally lower than those of the parent molecules. Predicted ADMET and physicochemical properties of conjugates indicated good CNS bioavailability and safety parameters comparable to those of amiridine and therefore acceptable for potential lead compounds at the early stages of anti-AD drug development.


Subject(s)
Alzheimer Disease/drug therapy , Aminoquinolines/pharmacology , Antioxidants/pharmacology , Cholinesterase Inhibitors/pharmacology , Neuroprotective Agents/pharmacology , Piperazine/pharmacology , Acetylcholinesterase/metabolism , Alzheimer Disease/metabolism , Aminoquinolines/chemistry , Animals , Antioxidants/chemical synthesis , Antioxidants/chemistry , Benzothiazoles/antagonists & inhibitors , Butyrylcholinesterase/metabolism , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Dose-Response Relationship, Drug , Horses , Humans , Models, Molecular , Molecular Structure , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/chemistry , Oxidative Stress/drug effects , Piperazine/chemistry , Structure-Activity Relationship , Sulfonic Acids/antagonists & inhibitors
17.
Eur J Med Chem ; 218: 113385, 2021 Jun 05.
Article in English | MEDLINE | ID: mdl-33831780

ABSTRACT

An expanded series of alkyl 2-arylhydrazinylidene-3-oxo-3-polyfluoroalkylpropionates (HOPs) 3 was obtained via Cu(OAc)2-catalyzed azo coupling. All were nanomolar inhibitors of carboxylesterase (CES), while moderate or weak inhibitors of acetylcholinesterase and butyrylcholinesterase. Steady-state kinetics studies showed that HOPs 3 are mixed type inhibitors of the three esterases. Molecular docking studies demonstrated that two functional groups in the structure of HOPs, trifluoromethyl ketone (TFK) and ester groups, bind to the CES active site suggesting subsequent reactions: formation of a tetrahedral adduct, and a slow hydrolysis reaction. The results of molecular modeling allowed us to explain some structure-activity relationships of CES inhibition by HOPs 3: their selectivity toward CES in comparison with cholinesterases and the high selectivity of pentafluoroethyl-substituted HOP 3p to hCES1 compared to hCES2. All compounds were predicted to have good intestinal absorption and blood-brain barrier permeability, low cardiac toxicity, good lipophilicity and aqueous solubility, and reasonable overall drug-likeness. HOPs with a TFK group and electron-donor substituents in the arylhydrazone moiety were potent antioxidants. All compounds possessed low cytotoxicity and low acute toxicity. Overall, a new promising type of bifunctional CES inhibitors has been found that are able to interact with the active site of the enzyme with the participation of two functional groups. The results indicate that HOPs have the potential to be good candidates as human CES inhibitors for biomedicinal applications.


Subject(s)
Carboxylic Ester Hydrolases/antagonists & inhibitors , Drug Design , Enzyme Inhibitors/pharmacology , Animals , Carboxylic Ester Hydrolases/metabolism , Cells, Cultured , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Mice , Models, Molecular , Molecular Structure , Structure-Activity Relationship
18.
Ann Neurosci ; 28(3-4): 170-178, 2021 Jul.
Article in English | MEDLINE | ID: mdl-35341222

ABSTRACT

Syringomyelia (SM) with Chiari malformation is a rare disease with an unpredictable course. Surgery and other interventions help reduce the severity of symptoms, but over 50% patients require re-operation. Auto-resolution is rare in this type of SM, and most cases progress to complications, which may amount to a great burden. The patient of SM with Arnold-Chiari malformation type 1 in a 54-year-old Russian woman who was treated with individualized classical homeopathy for over eight years with remarkable improvement in the clinical signs and symptoms of the condition and comorbidities. On MRI, the syrinx completely resolved, which further confirmed the benefit of this therapy. This case of SM with Arnold-Chiari malformation type 1 seemed to benefit from individualized classical homeopathy. Scientific investigation into an individualized classical homeopathic approach towards SM is necessary to establish its relevance in this condition.

19.
Molecules ; 25(24)2020 Dec 12.
Article in English | MEDLINE | ID: mdl-33322783

ABSTRACT

New hybrids of 4-amino-2,3-polymethylenequinoline with different sizes of the aliphatic ring linked to butylated hydroxytoluene (BHT) by enaminoalkyl (7) or aminoalkyl (8) spacers were synthesized as potential multifunctional agents for Alzheimer's disease (AD) treatment. All compounds were potent inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with selectivity toward BChE. Lead compound 8c, 2,6-di-tert-butyl-4-{[2-(7,8,9,10- tetrahydro-6H-cyclohepta[b]quinolin-11-ylamino)-ethylimino]-methyl}-phenol exhibited an IC50(AChE) = 1.90 ± 0.16 µM, IC50(BChE) = 0.084 ± 0.008 µM, and 13.6 ± 1.2% propidium displacement at 20 µM. Compounds possessed low activity against carboxylesterase, indicating likely absence of clinically unwanted drug-drug interactions. Kinetics were consistent with mixed-type reversible inhibition of both cholinesterases. Docking indicated binding to catalytic and peripheral AChE sites; peripheral site binding along with propidium displacement suggest the potential of the hybrids to block AChE-induced ß-amyloid aggregation, a disease-modifying effect. Compounds demonstrated high antioxidant activity in ABTS and FRAP assays as well as inhibition of luminol chemiluminescence and lipid peroxidation in mouse brain homogenates. Conjugates 8 with amine-containing spacers were better antioxidants than those with enamine spacers 7. Computational ADMET profiles for all compounds predicted good blood-brain barrier distribution (permeability), good intestinal absorption, and medium cardiac toxicity risk. Overall, based on their favorable pharmacological and ADMET profiles, conjugates 8 appear promising as candidates for AD therapeutics.


Subject(s)
Alzheimer Disease/drug therapy , Butylated Hydroxytoluene/therapeutic use , Animals , Antioxidants/chemistry , Antioxidants/therapeutic use , Butylated Hydroxytoluene/chemistry , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/therapeutic use , Humans , Mice , Molecular Docking Simulation , Propidium/chemistry
20.
Eur J Med Chem ; 208: 112768, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-32932211

ABSTRACT

4-Nitroso-3-trifluoromethyl-5-alkyl[(het)aryl]pyrazoles were synthesized via one-pot nitrosation of 1,3-diketones or their lithium salts followed by treatment of hydrazines. Reduction of nitroso-derivatives made it possible to obtain 4-amino-3-trifluoromethylpyrazoles chlorides. According to computer-aided calculations, all synthesized compounds are expected to have acceptable ADME profile for drug design. Tuberculostatic, antibacterial, antimycotic, antioxidant and cytotoxic activities of the compounds were evaluated in vitro, while their analgesic and anti-inflammatory action was tested in vivo along with acute toxicity studies. N-Unsubstituted 4-nitrosopyrazoles were the most effective tuberculostatics (MIC to 0.36 µg/ml) and antibacterial agents against Streptococcus pyogenes (MIC to 7.8 µg/ml), Staphylococcus aureus,S. aureus MRSA and Neisseria gonorrhoeae (MIC to 15.6 µg/ml). 4-Nitroso-1-methyl-5-phenylpyrazole had the pronounced antimycotic action against a wide range of fungi (Trichophytonrubrum, T. tonsurans, T. violaceum, T. interdigitale, Epidermophytonfloccosum, Microsporumcanis with MIC 0.38-12.5 µg/ml). N-Unsubstituted 4-aminopyrazoles shown high radical-scavenging activity in ABTS test, ORAC/AAPH and oxidative erythrocyte hemolysis assays. 1-Methyl-5-phenyl-3-trifluoromethylpyrazol-4-aminium chloride revealed potential anticancer activity against HeLa cells (SI > 1351). The pronounced analgesic activity was found for 4-nitroso- and 4-aminopyrazoles having phenyl fragment at the position 5 in "hot plate" test. The most of the obtained pyrazoles had a moderate acute toxicity.


Subject(s)
Nitroso Compounds/pharmacology , Pyrazoles/pharmacology , Animals , Bacteria/drug effects , Drug Screening Assays, Antitumor , Epidermophyton/drug effects , HeLa Cells , Humans , Mice , Microbial Sensitivity Tests , Molecular Structure , Nitroso Compounds/chemical synthesis , Nitroso Compounds/pharmacokinetics , Nitroso Compounds/toxicity , Pyrazoles/chemical synthesis , Pyrazoles/pharmacokinetics , Pyrazoles/toxicity , Rats, Sprague-Dawley , Structure-Activity Relationship , Trichophyton/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...