Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nutrients ; 13(3)2021 Mar 04.
Article in English | MEDLINE | ID: mdl-33806559

ABSTRACT

Vitamin D plays an important role in bone metabolism and is important for the prevention of multifactorial pathologies, including osteoporosis (OP). The biological action of vitamin is realized through its receptor, which is coded by the VDR gene. VDR gene polymorphism can influence individual predisposition to OP and response to vitamin D supplementation. The aim of this work was to reveal the effects of VDR gene ApaI rs7975232, BsmI rs1544410, TaqI rs731236, FokI rs2228570, and Cdx2 rs11568820 variants on bone mineral density (BMD), 25-hydroxyvitamin D level, and OP risk in Belarusian women. METHODS: The case group included 355 women with postmenopausal OP, and the control group comprised 247 women who met the inclusion criteria. TaqMan genotyping assay was used to determine VDR gene variants. RESULTS: Rs7975232 A/A, rs1544410 T/T, and rs731236 G/G single variants and their A-T-G haplotype showed a significant association with increased OP risk (for A-T-G, OR = 1.8, p = 0.0001) and decreased BMD (A-T-G, -0.09 g/cm2, p = 0.0001). The rs11568820 A-allele showed a protective effect on BMD (+0.22 g/cm2, p = 0.027). A significant dose effect with 25(OH)D was found for rs1544410, rs731236, and rs11568820 genotypes. Rs731236 A/A was associated with the 25(OH)D deficiency state. CONCLUSION: Our novel data on the relationship between VDR gene variants and BMD, 25(OH)D level, and OP risk highlights the importance of genetic markers for personalized medicine strategy.


Subject(s)
Bone Density/genetics , Nutritional Status/genetics , Postmenopause/genetics , Receptors, Calcitriol/genetics , Vitamin D/analogs & derivatives , White People/genetics , Alleles , Case-Control Studies , Cross-Sectional Studies , Female , Genetic Markers , Genetic Predisposition to Disease/ethnology , Genetic Predisposition to Disease/genetics , Genotype , Haplotypes , Humans , Middle Aged , Osteoporosis, Postmenopausal/ethnology , Osteoporosis, Postmenopausal/genetics , Polymorphism, Single Nucleotide , Postmenopause/ethnology , Republic of Belarus , Vitamin D/blood , White People/ethnology
2.
PLoS One ; 14(8): e0221511, 2019.
Article in English | MEDLINE | ID: mdl-31437227

ABSTRACT

INTRODUCTION: Long-term treatment is used in patients with osteoporosis, and bisphosphonates (BPs) are the most commonly prescribed medications. However, in some patients this therapy is not effective, cause different side effects and complications. Unfortunately, at least one year is needed to identify and confirm an ineffectiveness of BPs therapy on bone mineral density (BMD). Among other factors, a response to BPs therapy may also be explained by genetic factors. The aim of this study was to analyze the influence of SOST, PTH, FGF2, FDPS, GGPS1, and LRP5 gene variants on the response to treatment with aminobisphosphonates. MATERIALS AND METHODS: Women with postmenopausal osteoporosis were included to this study if they used aminobisphosphonates for at least 12 months. Exclusion criteria were: persistence on BPs therapy less than 80%, bone metabolic diseases, diseases deemed to affect bone metabolism, malignant tumours, using of any medications influencing BMD. The study protocol was approved by the local ethics committee. The BMD at the lumbar spine and femoral neck were measured using dual x-ray absorptiometry (GE Lunar) before and at least 12 months after treatment with BPs. According to BMD change, patients were divided in two groups-responders and non-responders to BPs terapy. Polymorphic variants in SOST, PTH, FGF2, FDPS, GGPS1, and LRP5 genes were determined using PCR analysis with TaqMan probes (Thermo Scientific). RESULTS: In total, 201 women with BPs therapy were included in the study. No statistically significant differences were observed in age, age at menopause, weight, height, BMI and baseline BMD levels between responders (122 subjects) and non-responders (79 subjects). As single markers, the SOST rs1234612 T/T (OR = 2.3; P = 0.02), PTH rs7125774 T/T (OR = 2.8, P = 0.0009), FDPS rs2297480 G/G (OR = 29.3, P = 2.2×10-7), and GGPS1 rs10925503 C/C+C/T (OR = 2.9; P = 0.003) gene variants were over-represented in non-responders group. No significant association between FGF2 rs6854081 and LRP5 rs3736228 gene variants and response to BPs treatment was observed. The carriers of T-T-G-C allelic combination (constructed from rs1234612, rs7125774, rs2297480, and rs10925503) were predisposed to negative response to BPs treatment (OR = 4.9, 95% CI 1.7-14.6, P = 0.005). The C-C-T-C combination was significantly over-represented in responders (OR = 0.1, 95% CI 0.1-0.5, P = 0.006). CONCLUSIONS: Our findings highlight the importance of identified single gene variants and their allelic combinations for pharmacogenetics of BPs therapy of osteoporosis. Complex screening of these genetic markers could be used as a new strategy for personalized antiresorptive therapy.


Subject(s)
Bone and Bones/metabolism , Diphosphonates/therapeutic use , Genetic Variation , Osteoporosis, Postmenopausal/drug therapy , Osteoporosis, Postmenopausal/genetics , Aged , Alleles , Bone and Bones/drug effects , Diphosphonates/pharmacology , Female , Gene Frequency , Humans , Middle Aged
3.
Article in English | MEDLINE | ID: mdl-29922235

ABSTRACT

Vitamin D receptor (VDR) is one of the main mediators of vitamin D biological activity. VDR dysfunction might substantially contribute to development of postmenopausal osteoporosis (PMO). Numerous studies have revealed the effects of several VDR gene variants on osteoporosis risk, although significant variation in different ethnicities have been suggested. The main purpose of this work was to assess the frequency of distribution of VDR genetic variants with established effect and evaluate their haplotype association with the risk of PMO in a cohort of Belarusian and Lithuanian women. Case group included women with PMO (n = 149), the control group comprised women with normal bone mineral density (BMD) and without previous fragility fractures (n = 172). Both groups were matched for age, height, sex, and BMI-no statistically significant differences observed. VDR gene polymorphic variants (ApaI rs7975232, BsmI rs1544410, TaqI rs731236, and Cdx2 rs11568820) were determined using polymerase chain reaction and restriction fragment length polymorphism. The lumbar spine (L1-L4) and femoral neck BMD was measured using dual-energy X-ray absorptiometry. Association between each VDR variant and PMO risk was assessed using multiple logistic regression. The genotyping revealed statistically significant difference in the rs7975232 genotype frequencies between the patients and the controls (homozygous C/C genotype was overrepresented in patients, p = 0.008). Patients with osteoporosis were also three times more likely to carry the rs1544410 G/G genotype, when compared to controls. We found that rs7975232, rs1544410, and rs731236 variants were in a strong direct linkage disequilibrium (p < 0.0001), suggesting that risk alleles of these markers are preferably inherited jointly. For the bearers of C-G-C haplotype (consisting of rs7975232, rs1544410, and rs731236 unfavorable alleles), the risk of PMO was significantly higher (OR = 4.7, 95% CI 2.8-8.1, p < 0.0001) compared to controls. This haplotype was significantly over-represented in PMO group compared to all other haplotypes. Our findings highlight the importance of identified haplotypes of VDR gene variants. Complex screening of these genetic markers can be used to implement personalized clinical approach for prevention, treatment, and rehabilitation programs.

4.
J Steroid Biochem Mol Biol ; 175: 125-135, 2018 01.
Article in English | MEDLINE | ID: mdl-28216084

ABSTRACT

Research carried out during the past two-decades extended the understanding of actions of vitamin D, from regulating calcium and phosphate absorption and bone metabolism to many pleiotropic actions in organs and tissues in the body. Most observational and ecological studies report association of higher serum 25-hydroxyvitamin D [25(OH)D] concentrations with improved outcomes for several chronic, communicable and non-communicable diseases. Consequently, numerous agencies and scientific organizations have developed recommendations for vitamin D supplementation and guidance on optimal serum 25(OH)D concentrations. The bone-centric guidelines recommend a target 25(OH)D concentration of 20ng/mL (50nmol/L), and age-dependent daily vitamin D doses of 400-800IU. The guidelines focused on pleiotropic effects of vitamin D recommend a target 25(OH)D concentration of 30ng/mL (75nmol/L), and age-, body weight-, disease-status, and ethnicity dependent vitamin D doses ranging between 400 and 2000IU/day. The wise and balanced choice of the recommendations to follow depends on one's individual health outcome concerns, age, body weight, latitude of residence, dietary and cultural habits, making the regional or nationwide guidelines more applicable in clinical practice. While natural sources of vitamin D can raise 25(OH)D concentrations, relative to dietary preferences and latitude of residence, in the context of general population, these sources are regarded ineffective to maintain the year-round 25(OH)D concentrations in the range of 30-50ng/mL (75-125nmol/L). Vitamin D self-administration related adverse effects, such as hypercalcemia and hypercalciuria are rare, and usually result from taking extremely high doses of vitamin D for a prolonged time.


Subject(s)
Dietary Supplements , Vitamin D Deficiency/diet therapy , Vitamin D/analogs & derivatives , Vitamin D/administration & dosage , Adolescent , Adult , Age Factors , Body Weight , Feeding Behavior , Female , Humans , Hypercalcemia/blood , Hypercalcemia/chemically induced , Hypercalcemia/pathology , Hypercalciuria/blood , Hypercalciuria/chemically induced , Hypercalciuria/pathology , Infant , Infant, Newborn , Male , Middle Aged , Vitamin D/adverse effects , Vitamin D/blood , Vitamin D Deficiency/blood
5.
Int J Endocrinol ; 2014: 589587, 2014.
Article in English | MEDLINE | ID: mdl-24790600

ABSTRACT

Little published information is available regarding epidemiological data on vitamin D status in the large geographical region of Central Europe (CE). We searched the journal literature with regard to 25(OH)D concentrations among community-dwelling or healthy people living in CE. 25(OH)D concentrations varied by age, season, study sample size, and methodological approach [i.e., 25(OH)D assay used]. Concentrations of 25(OH)D in CE appeared lower than 30 ng/mL, and the magnitude of hypovitaminosis D was similar to that reported in Western Europe. While most of the studies reviewed were cross-sectional studies, a longitudinal study was also included to obtain information on seasonal variability. The longitudinal study reported wintertime 25(OH)D values close to 21-23 ng/mL for all studied age groups, with a significant increase of 25(OH)D in August reaching 42 ng/mL for those aged 0-9 years, but only 21 ng/mL for the elderly aged 80-89 years. The decrease in 25(OH)D with respect to age was attributed to decreased time spent in the sun and decreased vitamin D production efficiency. Based on the literature review on vitamin D status in the CE populations, it can be concluded that 25(OH)vitamin D levels are on average below the 30 ng/mL level.

SELECTION OF CITATIONS
SEARCH DETAIL
...