Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Acta Neuropathol ; 147(1): 85, 2024 05 17.
Article in English | MEDLINE | ID: mdl-38758238

ABSTRACT

Pituitary neuroendocrine tumors (PitNETs) exhibiting aggressive, treatment-refractory behavior are the rare subset that progress after surgery, conventional medical therapies, and an initial course of radiation and are characterized by unrelenting growth and/or metastatic dissemination. Two groups of patients with PitNETs were sequenced: a prospective group of patients (n = 66) who consented to sequencing prior to surgery and a retrospective group (n = 26) comprised of aggressive/higher risk PitNETs. A higher mutational burden and fraction of loss of heterozygosity (LOH) was found in the aggressive, treatment-refractory PitNETs compared to the benign tumors (p = 1.3 × 10-10 and p = 8.5 × 10-9, respectively). Within the corticotroph lineage, a characteristic pattern of recurrent chromosomal LOH in 12 specific chromosomes was associated with treatment-refractoriness (occurring in 11 of 14 treatment-refractory versus 1 of 14 benign corticotroph PitNETs, p = 1.7 × 10-4). Across the cohort, a higher fraction of LOH was identified in tumors with TP53 mutations (p = 3.3 × 10-8). A machine learning approach identified loss of heterozygosity as the most predictive variable for aggressive, treatment-refractory behavior, outperforming the most common gene-level alteration, TP53, with an accuracy of 0.88 (95% CI: 0.70-0.96). Aggressive, treatment-refractory PitNETs are characterized by significant aneuploidy due to widespread chromosomal LOH, most prominently in the corticotroph tumors. This LOH predicts treatment-refractoriness with high accuracy and represents a novel biomarker for this poorly defined PitNET category.


Subject(s)
Loss of Heterozygosity , Neuroendocrine Tumors , Pituitary Neoplasms , Humans , Loss of Heterozygosity/genetics , Pituitary Neoplasms/genetics , Pituitary Neoplasms/pathology , Neuroendocrine Tumors/genetics , Neuroendocrine Tumors/pathology , Neuroendocrine Tumors/therapy , Male , Female , Middle Aged , Adult , Aged , Retrospective Studies , Mutation/genetics , Prospective Studies
2.
JAMA Oncol ; 9(1): 29-39, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36394867

ABSTRACT

Importance: Nonclinical studies suggest that the combination of poly(ADP-ribose) polymerase and programmed cell death 1/programmed cell death-ligand 1 inhibitors has enhanced antitumor activity; however, the patient populations that may benefit from this combination have not been identified. Objective: To evaluate whether the combination of avelumab and talazoparib is effective in patients with pathogenic BRCA1/2 or ATM alterations, regardless of tumor type. Design, Setting, and Participants: In this pan-cancer tumor-agnostic phase 2b nonrandomized controlled trial, patients with advanced BRCA1/2-altered or ATM-altered solid tumors were enrolled into 2 respective parallel cohorts. The study was conducted from July 2, 2018, to April 12, 2020, at 42 institutions in 9 countries. Interventions: Patients received 800 mg of avelumab every 2 weeks and 1 mg of talazoparib once daily. Main Outcomes and Measures: The primary end point was confirmed objective response (OR) per RECIST 1.1 by blinded independent central review. Results: A total of 200 patients (median [range] age, 59.0 [26.0-89.0] years; 132 [66.0%] women; 15 [7.5%] Asian, 11 [5.5%] African American, and 154 [77.0%] White participants) were enrolled: 159 (79.5%) in the BRCA1/2 cohort and 41 (20.5%) in the ATM cohort. The confirmed OR rate was 26.4% (42 patients, including 9 complete responses [5.7%]) in the BRCA1/2 cohort and 4.9% (2 patients) in the ATM cohort. In the BRCA1/2 cohort, responses were more frequent (OR rate, 30.3%; 95% CI, 22.2%-39.3%, including 8 complete responses [6.7%]) and more durable (median duration of response: 10.9 months [95% CI, 6.2 months to not estimable]) in tumor types associated with increased heritable cancer risk (ie, BRCA1/2-associated cancer types, such as ovarian, breast, prostate, and pancreatic cancers) and in uterine leiomyosarcoma (objective response in 3 of 3 patients and with ongoing responses greater than 24 months) compared with non-BRCA-associated cancer types. Responses in the BRCA1/2 cohort were numerically higher for patients with tumor mutational burden of 10 or more mutations per megabase (mut/Mb) vs less than 10 mut/Mb. The combination was well tolerated, with no new safety signals identified. Conclusions and Relevance: In this phase 2b nonrandomized controlled trial, neither the BRCA1/2 nor ATM cohort met the prespecified OR rate of 40%. Antitumor activity for the combination of avelumab and talazoparib in patients with BRCA1/2 alterations was observed in some patients with BRCA1/2-associated tumor types and uterine leiomyosarcoma; benefit was minimal in non-BRCA-associated cancer types. Trial Registration: ClinicalTrials.gov Identifier: NCT03565991.


Subject(s)
Antineoplastic Agents , Leiomyosarcoma , Male , Humans , Female , Middle Aged , Poly(ADP-ribose) Polymerase Inhibitors/adverse effects , Leiomyosarcoma/chemically induced , Leiomyosarcoma/drug therapy , Antineoplastic Agents/therapeutic use , Immunotherapy , BRCA1 Protein/genetics , Ataxia Telangiectasia Mutated Proteins/genetics
3.
J Endocr Soc ; 5(10): bvab133, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34466766

ABSTRACT

CONTEXT: Aggressive pituitary tumors that have progressed following temozolomide have limited treatment options. Peptide receptor radionuclide therapy and immunotherapy may have a complementary role in the management of these tumors. METHODS: We provide follow-up data on a previously reported patient with a hypermutated recurrent tumor. The patient in this report provided written informed consent for tumor sequencing and review of medical records on an institutional review board-approved research protocol (NCT01775072). RESULTS: This patient with a corticotroph pituitary carcinoma with alkylator-induced somatic hypermutation has remained on treatment with ipilimumab and nivolumab for 3.5 years and remains clinically well. After an initial partial response to checkpoint inhibitors, she has had several recurrences that have undergone immunoediting of subclonal mutations, which have been effectively treated with continuation of immunotherapy, surgery, external beam radiation, and 177Lu-DOTATATE. Following external beam radiotherapy (RT), she had radiographic evidence of an abscopal response at a distant site of disease suggesting a synergism between checkpoint inhibitors and RT. Following treatment with 177Lu-DOTATATE, the patient had a partial response with a 61% reduction in volume of the target lesion. CONCLUSION: In patients with aggressive pituitary tumors, treatment with checkpoint inhibitors may trigger an abscopal response from RT. With appropriate selection, an additional efficacious treatment, 177Lu-DOTATATE, may be available for a limited number of patients with aggressive pituitary tumors, including patients who have progressed on temozolomide and exhibit increased somatostatin receptor expression on 68Ga-DOTATATE positron emission tomography.

4.
Clin Cancer Res ; 27(14): 4066-4076, 2021 07 15.
Article in English | MEDLINE | ID: mdl-33947695

ABSTRACT

PURPOSE: Invasive mucinous adenocarcinoma (IMA) is a unique subtype of lung adenocarcinoma, characterized genomically by frequent KRAS mutations or specific gene fusions, most commonly involving NRG1. Comprehensive analysis of a large series of IMAs using broad DNA- and RNA-sequencing methods is still lacking, and it remains unclear whether molecular subtypes of IMA differ clinicopathologically. EXPERIMENTAL DESIGN: A total of 200 IMAs were analyzed by 410-gene DNA next-generation sequencing (MSK-IMPACT; n = 136) or hotspot 8-oncogene genotyping (n = 64). Driver-negative cases were further analyzed by 62-gene RNA sequencing (MSK-Fusion) and those lacking fusions were further tested by whole-exome sequencing and whole-transcriptome sequencing (WTS). RESULTS: Combined MSK-IMPACT and MSK-Fusion testing identified mutually exclusive driver alterations in 96% of IMAs, including KRAS mutations (76%), NRG1 fusions (7%), ERBB2 alterations (6%), and other less common events. In addition, WTS identified a novel NRG2 fusion (F11R-NRG2). Overall, targetable gene fusions were identified in 51% of KRAS wild-type IMAs, leading to durable responses to targeted therapy in some patients. Compared with KRAS-mutant IMAs, NRG1-rearranged tumors exhibited several more aggressive characteristics, including worse recurrence-free survival (P < 0.0001). CONCLUSIONS: This is the largest molecular study of IMAs to date, where we demonstrate the presence of a major oncogenic driver in nearly all cases. This study is the first to document more aggressive characteristics of NRG1-rearranged IMAs, ERBB2 as the third most common alteration, and a novel NRG2 fusion in these tumors. Comprehensive molecular testing of KRAS wild-type IMAs that includes fusion testing is essential, given the high prevalence of alterations with established and investigational targeted therapies in this subset.


Subject(s)
Adenocarcinoma, Mucinous/classification , Adenocarcinoma, Mucinous/genetics , Lung Neoplasms/classification , Lung Neoplasms/genetics , Adenocarcinoma, Mucinous/pathology , Adult , Aged , Aged, 80 and over , Female , Humans , Lung Neoplasms/pathology , Male , Middle Aged , Mutation , Neoplasm Invasiveness
5.
Nat Commun ; 10(1): 2410, 2019 06 03.
Article in English | MEDLINE | ID: mdl-31160587

ABSTRACT

Medulloblastoma, which is the most common malignant paediatric brain tumour, has a 70% survival rate, but standard treatments often lead to devastating life-long side effects and recurrence is fatal. One of the emerging strategies in the search for treatments is to determine the roles of tumour microenvironment cells in the growth and maintenance of tumours. The most attractive target is tumour-associated macrophages (TAMs), which are abundantly present in the Sonic Hedgehog (SHH) subgroup of medulloblastoma. Here, we report an unexpected beneficial role of TAMs in SHH medulloblastoma. In human patients, decreased macrophage number is correlated with significantly poorer outcome. We confirm macrophage anti-tumoural behaviour in both ex vivo and in vivo murine models of SHH medulloblastoma. Taken together, our findings suggest that macrophages play a positive role by impairing tumour growth in medulloblastoma, in contrast to the pro-tumoural role played by TAMs in glioblastoma, another common brain tumour.


Subject(s)
Cerebellar Neoplasms/immunology , Macrophages/immunology , Medulloblastoma/immunology , Tumor Microenvironment/immunology , Animals , Antigens, CD/genetics , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/genetics , Antigens, Differentiation, Myelomonocytic/metabolism , CD11b Antigen/genetics , CD11b Antigen/metabolism , Calcium-Binding Proteins , Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/metabolism , Chemokine CCL2/immunology , Chemokine CCL2/metabolism , DNA-Binding Proteins/genetics , Disease Models, Animal , Hedgehog Proteins/metabolism , Humans , Macrophages/metabolism , Medulloblastoma/genetics , Medulloblastoma/metabolism , Mice , Microfilament Proteins , Microglia/immunology , Myeloid Cells/immunology , Receptors, CCR2/genetics , Up-Regulation
6.
Nat Commun ; 10(1): 332, 2019 01 18.
Article in English | MEDLINE | ID: mdl-30659187

ABSTRACT

Drugs that modify the epigenome are powerful tools for treating cancer, but these drugs often have pleiotropic effects, and identifying patients who will benefit from them remains a major clinical challenge. Here we show that medulloblastomas driven by the transcription factor Gfi1 are exquisitely dependent on the enzyme lysine demethylase 1 (Kdm1a/Lsd1). We demonstrate that Lsd1 physically associates with Gfi1, and that these proteins cooperate to inhibit genes involved in neuronal commitment and differentiation. We also show that Lsd1 is essential for Gfi1-mediated transformation: Gfi1 proteins that cannot recruit Lsd1 are unable to drive tumorigenesis, and genetic ablation of Lsd1 markedly impairs tumor growth in vivo. Finally, pharmacological inhibitors of Lsd1 potently inhibit growth of Gfi1-driven tumors. These studies provide important insight into the mechanisms by which Gfi1 contributes to tumorigenesis, and identify Lsd1 inhibitors as promising therapeutic agents for Gfi1-driven medulloblastoma.


Subject(s)
Carcinogenesis/drug effects , Cerebellar Neoplasms/pathology , DNA-Binding Proteins/metabolism , Histone Demethylases/metabolism , Medulloblastoma/pathology , Transcription Factors/metabolism , Animals , Antibiotics, Antineoplastic/therapeutic use , Cell Proliferation/drug effects , Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/therapy , DNA-Binding Proteins/genetics , Doxorubicin/therapeutic use , Gene Expression Regulation, Neoplastic , HEK293 Cells , Histone Demethylases/genetics , Humans , Medulloblastoma/genetics , Medulloblastoma/therapy , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, SCID , NIH 3T3 Cells , Neoplasm Transplantation , Oncogenic Viruses , Retroviridae , Transcription Factors/genetics
8.
Lancet Oncol ; 19(6): 768-784, 2018 06.
Article in English | MEDLINE | ID: mdl-29778738

ABSTRACT

BACKGROUND: Young children with medulloblastoma have a poor overall survival compared with older children, due to use of radiation-sparing therapy in young children. Radiotherapy is omitted or reduced in these young patients to spare them from debilitating long-term side-effects. We aimed to estimate event-free survival and define the molecular characteristics associated with progression-free survival in young patients with medulloblastoma using a risk-stratified treatment strategy designed to defer, reduce, or delay radiation exposure. METHODS: In this multicentre, phase 2 trial, we enrolled children younger than 3 years with newly diagnosed medulloblastoma at six centres in the USA and Australia. Children aged 3-5 years with newly diagnosed, non-metastatic medulloblastoma without any high-risk features were also eligible. Eligible patients were required to start therapy within 31 days from definitive surgery, had a Lansky performance score of at least 30, and did not receive previous radiotherapy or chemotherapy. Patients were stratified postoperatively by clinical and histological criteria into low-risk, intermediate-risk, and high-risk treatment groups. All patients received identical induction chemotherapy (methotrexate, vincristine, cisplatin, and cyclophosphamide), with high-risk patients also receiving an additional five doses of vinblastine. Induction was followed by risk-adapted consolidation therapy: low-risk patients received cyclophosphamide (1500 mg/m2 on day 1), etoposide (100 mg/m2 on days 1 and 2), and carboplatin (area under the curve 5 mg/mL per min on day 2) for two 4-week cycles; intermediate-risk patients received focal radiation therapy (54 Gy with a clinical target volume of 5 mm over 6 weeks) to the tumour bed; and high-risk patients received chemotherapy with targeted intravenous topotecan (area under the curve 120-160 ng-h/mL intravenously on days 1-5) and cyclophosphamide (600 mg/m2 intravenously on days 1-5). After consolidation, all patients received maintenance chemotherapy with cyclophosphamide, topotecan, and erlotinib. The coprimary endpoints were event-free survival and patterns of methylation profiling associated with progression-free survival. Outcome and safety analyses were per protocol (all patients who received at least one dose of induction chemotherapy); biological analyses included all patients with tissue available for methylation profiling. This trial is registered with ClinicalTrials.gov, number NCT00602667, and was closed to accrual on April 19, 2017. FINDINGS: Between Nov 27, 2007, and April 19, 2017, we enrolled 81 patients with histologically confirmed medulloblastoma. Accrual to the low-risk group was suspended after an interim analysis on Dec 2, 2015, when the 1-year event-free survival was estimated to be below the stopping rule boundary. After a median follow-up of 5·5 years (IQR 2·7-7·3), 5-year event-free survival was 31·3% (95% CI 19·3-43·3) for the whole cohort, 55·3% (95% CI 33·3-77·3) in the low-risk cohort (n=23) versus 24·6% (3·6-45·6) in the intermediate-risk cohort (n=32; hazard ratio 2·50, 95% CI 1·19-5·27; p=0·016) and 16·7% (3·4-30·0) in the high-risk cohort (n=26; 3·55, 1·66-7·59; p=0·0011; overall p=0·0021). 5-year progression-free survival by methylation subgroup was 51·1% (95% CI 34·6-67·6) in the sonic hedgehog (SHH) subgroup (n=42), 8·3% (95% CI 0·0-24·0%) in the group 3 subgroup (n=24), and 13·3% (95% CI 0·0-37·6%) in the group 4 subgroup (n=10). Within the SHH subgroup, two distinct methylation subtypes were identified and named iSHH-I and iSHH-II. 5-year progression-free survival was 27·8% (95% CI 9·0-46·6; n=21) for iSHH-I and 75·4% (55·0-95·8; n=21) for iSHH-II. The most common adverse events were grade 3-4 febrile neutropenia (48 patients [59%]), neutropenia (21 [26%]), infection with neutropenia (20 [25%]), leucopenia (15 [19%]), vomiting (15 [19%]), and anorexia (13 [16%]). No treatment-related deaths occurred. INTERPRETATION: The risk-adapted approach did not improve event-free survival in young children with medulloblastoma. However, the methylation subgroup analyses showed that the SHH subgroup had improved progression-free survival compared with the group 3 subgroup. Moreover, within the SHH subgroup, the iSHH-II subtype had improved progression-free survival in the absence of radiation, intraventricular chemotherapy, or high-dose chemotherapy compared with the iSHH-I subtype. These findings support the development of a molecularly driven, risk-adapted, treatment approach in future trials in young children with medulloblastoma. FUNDING: American Lebanese Syrian Associated Charities, St Jude Children's Research Hospital, NCI Cancer Center, Alexander and Margaret Stewart Trust, Sontag Foundation, and American Association for Cancer Research.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Biomarkers, Tumor/genetics , Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/therapy , Cranial Irradiation , DNA Methylation , Medulloblastoma/genetics , Medulloblastoma/therapy , Neoadjuvant Therapy , Age Factors , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Australia , Cerebellar Neoplasms/mortality , Cerebellar Neoplasms/pathology , Chemotherapy, Adjuvant , Child, Preschool , Clinical Decision-Making , Cranial Irradiation/adverse effects , Cranial Irradiation/mortality , Gene Expression Profiling , Humans , Infant , Medulloblastoma/mortality , Medulloblastoma/pathology , Neoadjuvant Therapy/adverse effects , Neoadjuvant Therapy/mortality , Patient Selection , Predictive Value of Tests , Progression-Free Survival , Radiation Dosage , Radiotherapy, Adjuvant , Risk Assessment , Risk Factors , Time Factors , United States
9.
Nature ; 555(7696): 321-327, 2018 03 15.
Article in English | MEDLINE | ID: mdl-29489754

ABSTRACT

Pan-cancer analyses that examine commonalities and differences among various cancer types have emerged as a powerful way to obtain novel insights into cancer biology. Here we present a comprehensive analysis of genetic alterations in a pan-cancer cohort including 961 tumours from children, adolescents, and young adults, comprising 24 distinct molecular types of cancer. Using a standardized workflow, we identified marked differences in terms of mutation frequency and significantly mutated genes in comparison to previously analysed adult cancers. Genetic alterations in 149 putative cancer driver genes separate the tumours into two classes: small mutation and structural/copy-number variant (correlating with germline variants). Structural variants, hyperdiploidy, and chromothripsis are linked to TP53 mutation status and mutational signatures. Our data suggest that 7-8% of the children in this cohort carry an unambiguous predisposing germline variant and that nearly 50% of paediatric neoplasms harbour a potentially druggable event, which is highly relevant for the design of future clinical trials.


Subject(s)
Genome, Human/genetics , Genomics , Mutation/genetics , Neoplasms/classification , Neoplasms/genetics , Adolescent , Adult , Child , Chromothripsis , Cohort Studies , DNA Copy Number Variations/genetics , Diploidy , Genetic Predisposition to Disease/genetics , Germ-Line Mutation/genetics , Humans , Molecular Targeted Therapy , Mutation Rate , Neoplasms/drug therapy , Tumor Suppressor Protein p53/genetics , Young Adult
10.
Nature ; 547(7663): 311-317, 2017 07 19.
Article in English | MEDLINE | ID: mdl-28726821

ABSTRACT

Current therapies for medulloblastoma, a highly malignant childhood brain tumour, impose debilitating effects on the developing child, and highlight the need for molecularly targeted treatments with reduced toxicity. Previous studies have been unable to identify the full spectrum of driver genes and molecular processes that operate in medulloblastoma subgroups. Here we analyse the somatic landscape across 491 sequenced medulloblastoma samples and the molecular heterogeneity among 1,256 epigenetically analysed cases, and identify subgroup-specific driver alterations that include previously undiscovered actionable targets. Driver mutations were confidently assigned to most patients belonging to Group 3 and Group 4 medulloblastoma subgroups, greatly enhancing previous knowledge. New molecular subtypes were differentially enriched for specific driver events, including hotspot in-frame insertions that target KBTBD4 and 'enhancer hijacking' events that activate PRDM6. Thus, the application of integrative genomics to an extensive cohort of clinical samples derived from a single childhood cancer entity revealed a series of cancer genes and biologically relevant subtype diversity that represent attractive therapeutic targets for the treatment of patients with medulloblastoma.


Subject(s)
DNA Mutational Analysis , Genome, Human/genetics , Medulloblastoma/classification , Medulloblastoma/genetics , Whole Genome Sequencing , Carcinogenesis/genetics , Carrier Proteins/genetics , Cohort Studies , DNA Methylation , Datasets as Topic , Epistasis, Genetic , Genomics , Humans , Molecular Targeted Therapy , Muscle Proteins/genetics , Mutation , Oncogenes/genetics , Transcription Factors/genetics , Wnt Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL