Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
FEMS Microbiol Ecol ; 100(3)2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38366934

ABSTRACT

Microbes in floral nectar can impact both their host plants and floral visitors, yet little is known about the nectar microbiome of most pollinator-dependent crops. In this study, we examined the abundance and composition of the fungi and bacteria inhabiting Vaccinium spp. nectar, as well as nectar volume and sugar concentrations. We compared wild V. myrsinites with two field-grown V. corymbosum cultivars collected from two organic and two conventional farms. Differences in nectar traits and microbiomes were identified between V. corymbosum cultivars but not Vaccinium species. The microbiome of cultivated plants also varied greatly between farms, whereas management regime had only subtle effects, with higher fungal populations detected under organic management. Nectars were hexose-dominant, and high cell densities were correlated with reduced nectar sugar concentrations. Bacteria were more common than fungi in blueberry nectar, although both were frequently detected and co-occurred more often than would be predicted by chance. "Cosmopolitan" blueberry nectar microbes that were isolated in all plants, including Rosenbergiella sp. and Symmetrospora symmetrica, were identified. This study provides the first systematic report of the blueberry nectar microbiome, which may have important implications for pollinator and crop health.


Subject(s)
Blueberry Plants , Microbiota , Vaccinium , Farms , Plant Nectar , Sugars
2.
Environ Microbiol ; 23(8): 4141-4150, 2021 08.
Article in English | MEDLINE | ID: mdl-33876542

ABSTRACT

Floral nectar often contains pollen and microorganisms, which may change nectar's chemical composition, and in turn impact pollinator affinity. However, their individual and combined effects remain understudied. Here, we examined the impacts of the nectar specialist yeast, Metschnikowia reukaufii, and the addition of sunflower (Hellianthus annus) pollen. Pollen grains remained intact, yet still increased yeast growth and amino acid concentrations in nectar, whereas yeast depleted amino acids. Pollen, but not yeast, changed nectar sugar concentrations by converting sucrose to its monomers. Both pollen and yeast contributed emissions from nectar, though yeast volatiles were more abundant than pollen volatiles. Yeast volatile emission was positively correlated with pollen concentration and cell density, and yeast depleted a subset of pollen-derived volatiles. Honey bees avoided foraging on yeast-inoculated nectar and foraged equally among uninoculated nectars regardless of pollen content, underscoring the importance of microbial metabolites in mediating pollinator foraging.


Subject(s)
Plant Nectar , Pollination , Animals , Bees , Odorants , Pollen , Yeasts
3.
Curr Opin Insect Sci ; 44: 23-34, 2021 04.
Article in English | MEDLINE | ID: mdl-33096275

ABSTRACT

Many plant-associated microbial communities produce volatile signals that influence insect responses, yet the impact of floral microorganisms has received less attention than other plant microbiomes. Floral microorganisms alter plant and floral odors by adding their own emissions or modifying plant volatiles. These contextual and microbe species-specific changes in floral signaling are detectable by insects and can modify their behavior. Opportunities for future work in floral systems include identifying specific microbial semiochemicals that underlie insect behavioral responses and examining if insect species vary in their responses to microbial volatiles. Examining if documented patterns are consistent across diverse plant-microbe-insect interactions and in realistic plant-based studies will improve our understanding of how microbes mediate pollination interactions in complex system.


Subject(s)
Flowers/microbiology , Insecta/physiology , Olfactory Perception , Volatile Organic Compounds , Animals , Behavior, Animal , Pheromones
4.
Int J Evol Biol ; 2012: 523967, 2012.
Article in English | MEDLINE | ID: mdl-22518334

ABSTRACT

Divergent natural selection has the potential to drive the evolution of reproductive isolation. The euryhaline killifish Lucania parva has stable populations in both fresh water and salt water. Lucania parva and its sister species, the freshwater L. goodei, are isolated by both prezygotic and postzygotic barriers. To further test whether adaptation to salinity has led to the evolution of these isolating barriers, we tested for incipient reproductive isolation within L. parva by crossing freshwater and saltwater populations. We found no evidence for prezygotic isolation, but reduced hybrid survival indicated that postzygotic isolation existed between L. parva populations. Therefore, postzygotic isolation evolved before prezygotic isolation in these ecologically divergent populations. Previous work on these species raised eggs with methylene blue, which acts as a fungicide. We found this fungicide distorts the pattern of postzygotic isolation by increasing fresh water survival in L. parva, masking species/population differences, and underestimating hybrid inviability.

SELECTION OF CITATIONS
SEARCH DETAIL
...