Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
bioRxiv ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38746285

ABSTRACT

Lyme disease is a tick-borne, multisystem infection caused by the spirochete, Borreliella burgdorferi . Although antibodies have been implicated in the resolution of Lyme disease, the specific B cell epitopes targeted during human infections remain largely unknown. In this study, we characterized and defined the structural epitope of a patient-derived bactericidal monoclonal IgG ("B11") against Outer surface protein C (OspC), a homodimeric lipoprotein necessary for B. burgdorferi tick-mediated transmission and early-stage colonization of vertebrate hosts. High-resolution epitope mapping was accomplished through hydrogen deuterium exchange-mass spectrometry (HDX-MS) and X-ray crystallography. Structural analysis of B11 Fab-OspC A complexes revealed the B11 Fabs associated in a 1:1 stoichiometry with the lateral faces of OspC A homodimers such that the antibodies are essentially positioned perpendicular to the spirochete's outer surface. B11's primary contacts reside within the membrane proximal regions of α-helices 1 and 6 and adjacent loops 5 and 6 in one OspC A monomer. In addition, B11 spans the OspC A dimer interface, engaging opposing α-helix 1', α-helix 2', and loop 2-3' in the second OspC A monomer. The B11-OspC A structure is reminiscent of the recently solved mouse transmission blocking monoclonal IgG B5 in complex with OspC A , indicating a mode of engagement with OspC that is conserved across species. In conclusion, we provide the first detailed insight into the interaction between a functional human antibody and an immunodominant Lyme disease antigen long considered an important vaccine target.

2.
Biomol NMR Assign ; 18(1): 85-91, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38642265

ABSTRACT

Ricin is a potent plant toxin that targets the eukaryotic ribosome by depurinating an adenine from the sarcin-ricin loop (SRL), a highly conserved stem-loop of the rRNA. As a category-B agent for bioterrorism it is a prime target for therapeutic intervention with antibodies and enzyme blocking inhibitors since no effective therapy exists for ricin. Ricin toxin A subunit (RTA) depurinates the SRL by binding to the P-stalk proteins at a remote site. Stimulation of the N-glycosidase activity of RTA by the P-stalk proteins has been studied extensively by biochemical methods and by X-ray crystallography. The current understanding of RTA's depurination mechanism relies exclusively on X-ray structures of the enzyme in the free state and complexed with transition state analogues. To date we have sparse evidence of conformational dynamics and allosteric regulation of RTA activity that can be exploited in the rational design of inhibitors. Thus, our primary goal here is to apply solution NMR techniques to probe the residue specific structural and dynamic coupling active in RTA as a prerequisite to understand the functional implications of an allosteric network. In this report we present de novo sequence specific amide and sidechain methyl chemical shift assignments of the 267 residue RTA in the free state and in complex with an 11-residue peptide (P11) representing the identical C-terminal sequence of the ribosomal P-stalk proteins. These assignments will facilitate future studies detailing the propagation of binding induced conformational changes in RTA complexed with inhibitors, antibodies, and biologically relevant targets.


Subject(s)
Nitrogen Isotopes , Nuclear Magnetic Resonance, Biomolecular , Ricin , Ricin/chemistry , Protein Subunits/chemistry , Amino Acid Sequence
3.
Infect Immun ; 92(4): e0008424, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38470113

ABSTRACT

Camelid-derived, single-domain antibodies (VHHs) have proven to be extremely powerful tools in defining the antigenic landscape of immunologically heterogeneous surface proteins. In this report, we generated a phage-displayed VHH library directed against the candidate Lyme disease vaccine antigen, outer surface protein A (OspA). Two alpacas were immunized with recombinant OspA serotype 1 from Borrelia burgdorferi sensu stricto strain B31, in combination with the canine vaccine RECOMBITEK Lyme containing lipidated OspA. The phage library was subjected to two rounds of affinity enrichment ("panning") against recombinant OspA, yielding 21 unique VHHs within two epitope bins, as determined through competition enzyme linked immunosorbent assays (ELISAs) with a panel of OspA-specific human monoclonal antibodies. Epitope refinement was conducted by hydrogen exchange-mass spectrometry. Six of the monovalent VHHs were expressed as human IgG1-Fc fusion proteins and shown to have functional properties associated with protective human monoclonal antibodies, including B. burgdorferi agglutination, outer membrane damage, and complement-dependent borreliacidal activity. The VHHs displayed unique reactivity profiles with the seven OspA serotypes associated with B. burgdorferi genospecies in the United States and Europe consistent with there being unique epitopes across OspA serotypes that should be considered when designing and evaluating multivalent Lyme disease vaccines.


Subject(s)
Lipoproteins , Lyme Disease , Single-Domain Antibodies , Animals , Dogs , Humans , Lyme Disease Vaccines , Epitopes , Antibodies, Bacterial , Bacterial Vaccines , Bacterial Outer Membrane Proteins , Lyme Disease/prevention & control , Antigens, Surface , Antibodies, Monoclonal
4.
Biochemistry ; 63(7): 893-905, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38467020

ABSTRACT

Shiga toxin 2a (Stx2a) is the virulence factor of Escherichia coli (STEC), which is associated with hemolytic uremic syndrome, the leading cause of pediatric kidney failure. The A1 subunit of Stx2a (Stx2A1) binds to the conserved C-terminal domain (CTD) of the ribosomal P-stalk proteins to remove an adenine from the sarcin-ricin loop (SRL) in the 28S rRNA, inhibiting protein synthesis. There are no antidotes against Stx2a or any other ribosome-inactivating protein (RIP). The structural and functional details of the binding of Stx2A1 to the P-stalk CTD are not known. Here, we carry out a deletion analysis of the conserved P-stalk CTD and show that the last eight amino acids (P8) of the P-stalk proteins are the minimal sequence required for optimal affinity and maximal inhibitory activity against Stx2A1. We determined the first X-ray crystal structure of Stx2A1 alone and in complex with P8 and identified the exact binding site. The C-terminal aspartic acid of the P-stalk CTD serves as an anchor, forming key contacts with the conserved arginine residues at the P-stalk binding pocket of Stx2A1. Although the ricin A subunit (RTA) binds to the P-stalk CTD, the last aspartic acid is more critical for the interaction with Stx2A1, indicating that RIPs differ in their requirements for the P-stalk. These results demonstrate that the catalytic activity of Stx2A1 is inhibited by blocking its interactions with the P-stalk, providing evidence that P-stalk binding is an essential first step in the recruitment of Stx2A1 to the SRL for depurination.


Subject(s)
Ricin , Shiga Toxin 2 , Humans , Child , Shiga Toxin 2/analysis , Shiga Toxin 2/metabolism , Ribosomes/metabolism , Ricin/chemistry , Ricin/genetics , Ricin/metabolism , Aspartic Acid , Binding Sites , Peptides/metabolism , Escherichia coli/metabolism
5.
Bioorg Med Chem ; 100: 117614, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38340640

ABSTRACT

Ricin, a category-B agent for bioterrorism, and Shiga toxins (Stxs), which cause food poisoning bind to the ribosomal P-stalk to depurinate the sarcin/ricin loop. No effective therapy exists for ricin or Stx intoxication. Ribosome binding sites of the toxins have not been targeted by small molecules. We previously identified CC10501, which inhibits toxin activity by binding the P-stalk pocket of ricin toxin A subunit (RTA) remote from the catalytic site. Here, we developed a fluorescence polarization assay and identified a new class of compounds, which bind P-stalk pocket of RTA with higher affinity and inhibit catalytic activity with submicromolar potency. A lead compound, RU-NT-206, bound P-stalk pocket of RTA with similar affinity as a five-fold larger P-stalk peptide and protected cells against ricin and Stx2 holotoxins for the first time. These results validate the P-stalk binding site of RTA as a critical target for allosteric inhibition of the active site.


Subject(s)
Ricin , Binding Sites , Peptides/pharmacology , Protein Binding , Ribosomes/metabolism , Ricin/antagonists & inhibitors , Ricin/metabolism
6.
Article in English | MEDLINE | ID: mdl-38091357

ABSTRACT

PURPOSE: The primary aim of this study was the examination of relationships between students' preadmission achievement, intraphysician assistant (PA) program achievement, and Physician Assistant National Certifying Examination (PANCE) performance using path analysis regression. Second, this study explored the extent to which the theoretical model differed based on several key demographic variables: sex and undergraduate major. METHODS: This retrospective, single-institution study examined data from 2015 to 2022 (n = 322). Analysis included descriptive statistics, bivariate correlations, and path analysis using structural equation modeling to examine direct, indirect, and total effects of all predictors on the primary outcome variable, PANCE. RESULTS: PACKRAT-I demonstrated the largest total effect size on PANCE total score (ß = .45). Total effect size on PANCE was small yet significant for prerequisite grade point average (GPA), Graduate Record Exam verbal and quantitative subscores, a comprehensive didactic cardiology examination, didactic and clinical year GPAs, and End of Rotation examination mean score (ß < .25). The relationship between mean preceptor evaluation score and PANCE was nonsignificant. Subgroup analyses showed differences between female and male in the relationship between several didactic variables and preceptor evaluations. No differences were detected between groups based on undergraduate major. CONCLUSION: This PANCE analysis revealed relationships among pre-PA and intra-PA performance metrics that may subsequently support data-informed strategies for programs to identify at-risk students, aid student success, and support the assessment of curriculum. Future studies should replicate the approach using a larger, multi-institution sample that examines additional preprogram and intraprogram achievement variables.

7.
Biochemistry ; 62(22): 3181-3187, 2023 11 21.
Article in English | MEDLINE | ID: mdl-37903428

ABSTRACT

Monoclonal antibodies, JB4 and SylH3, neutralize ricin toxin (RT) by inhibiting the galactose-specific lectin activity of the B subunit of the toxin (RTB), which is required for cell attachment and entry. It is not immediately apparent how the antibodies accomplish this feat, considering that RTB consists of two globular domains (D1, D2) each divided into three homologous subdomains (α, ß, γ) with the two functional galactosyl-specific carbohydrate recognition domains (CRDs) situated on opposite poles (subdomains 1α and 2γ). Here, we report the X-ray crystal structures of JB4 and SylH3 Fab fragments bound to RTB in the context of RT. The structures revealed that neither Fab obstructed nor induced detectable conformational alterations in subdomains 1α or 2γ. Rather, JB4 and SylH3 Fabs recognize nearly identical epitopes within an ancillary carbohydrate recognition pocket located in subdomain 1ß. Despite limited amino acid sequence similarity between SylH3 and JB4 Fabs, each paratope inserts a Phe side chain from the heavy (H) chain complementarity determining region (CDR3) into the 1ß CRD pocket, resulting in local aromatic stacking interactions that potentially mimic a ligand interaction. Reconciling the fact that stoichiometric amounts of SylH3 and JB4 are sufficient to disarm RTB's lectin activity without evidence of allostery, we propose that subdomain 1ß functions as a "coreceptor" required to stabilize glycan interactions principally mediated by subdomains 1α and 2γ. Further investigation into subdomain 1ß will yield fundamental insights into the large family of R-type lectins and open novel avenues for countermeasures aimed at preventing toxin uptake into vulnerable tissues and cells.


Subject(s)
Ricin , Toxins, Biological , Ricin/chemistry , Ricin/metabolism , Antibodies, Monoclonal , Epitopes , Molecular Conformation , Carbohydrates
8.
Proteins ; 91(11): 1463-1470, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37455569

ABSTRACT

319-44 is a human monoclonal antibody capable of passively protecting mice against tick-mediated infection with Borreliella burgdorferi, the bacterial genospecies responsible for Lyme disease in North America. In vitro, 319-44 has complement-dependent borreliacidal activity and spirochete agglutinating properties. Here, we report the 2.2 Å-resolution crystal structure of 319-44 Fab fragments in complex with Outer surface protein A (OspA), the ~30 kDa lipoprotein that was the basis of the first-generation Lyme disease vaccine approved in the United States. The 319-44 epitope is focused on OspA ß-strands 19, 20, and 21, and the loops between ß-strands 16-17, 18-19, and 20-21. Contact with loop 20-21 explains competition with LA-2, the murine monoclonal antibody used to estimate serum borreliacidal activities in the first-generation Lyme disease vaccine clinical trials. A high-resolution B-cell epitope map of OspA will accelerate structure-based design of second generation OspA-based vaccines.

9.
mBio ; 14(2): e0298122, 2023 04 25.
Article in English | MEDLINE | ID: mdl-36976016

ABSTRACT

Outer surface protein C (OspC) plays a pivotal role in mediating tick-to-host transmission and infectivity of the Lyme disease spirochete, Borreliella burgdorferi. OspC is a helical-rich homodimer that interacts with tick salivary proteins, as well as components of the mammalian immune system. Several decades ago, it was shown that the OspC-specific monoclonal antibody, B5, was able to passively protect mice from experimental tick-transmitted infection by B. burgdorferi strain B31. However, B5's epitope has never been elucidated, despite widespread interest in OspC as a possible Lyme disease vaccine antigen. Here, we report the crystal structure of B5 antigen-binding fragments (Fabs) in complex with recombinant OspC type A (OspCA). Each OspC monomer within the homodimer was bound by a single B5 Fab in a side-on orientation, with contact points along OspC's α-helix 1 and α-helix 6, as well as interactions with the loop between α-helices 5 and 6. In addition, B5's complementarity-determining region (CDR) H3 bridged the OspC-OspC' homodimer interface, revealing the quaternary nature of the protective epitope. To provide insight into the molecular basis of B5 serotype specificity, we solved the crystal structures of recombinant OspC types B and K and compared them to OspCA. This study represents the first structure of a protective B cell epitope on OspC and will aid in the rational design of OspC-based vaccines and therapeutics for Lyme disease. IMPORTANCE The spirochete Borreliella burgdorferi is a causative agent of Lyme disease, the most common tickborne disease in the United States. The spirochete is transmitted to humans during the course of a tick taking a bloodmeal. After B. burgdorferi is deposited into the skin of a human host, it replicates locally and spreads systemically, often resulting in clinical manifestations involving the central nervous system, joints, and/or heart. Antibodies directed against B. burgdorferi's outer surface protein C (OspC) are known to block tick-to-host transmission, as well as dissemination of the spirochete within a mammalian host. In this report, we reveal the first atomic structure of one such antibody in complex with OspC. Our results have implications for the design of a Lyme disease vaccine capable of interfering with multiple stages in B. burgdorferi infection.


Subject(s)
Borrelia burgdorferi , Lyme Disease , Ticks , Humans , Animals , Mice , Borrelia burgdorferi/metabolism , Epitopes, B-Lymphocyte/genetics , Lyme Disease Vaccines , Antigens, Bacterial , Lyme Disease/prevention & control , Bacterial Outer Membrane Proteins/chemistry , Mammals/metabolism
10.
ACS Infect Dis ; 8(12): 2515-2528, 2022 12 09.
Article in English | MEDLINE | ID: mdl-36350351

ABSTRACT

The Lyme disease (LD) vaccine formerly approved for use in the United States consisted of recombinant outer surface protein A (OspA) from Borrelia burgdorferi sensu stricto (ss), the bacterial genospecies responsible for the vast majority of LD in North America. OspA is an ∼30 kDa lipoprotein made up of 21 antiparallel ß-strands and a C-terminal α-helix. In clinical trials, protection against LD following vaccination correlated with serum antibody titers against a single epitope near the C-terminus of OspA, as defined by the mouse monoclonal antibody (MAb), LA-2. However, the breadth of the human antibody response to OspA following vaccination remains undefined even as next-generation multivalent OspA-based vaccines are under development. In this report, we employed hydrogen exchange-mass spectrometry (HX-MS) to localize the epitopes recognized by a unique panel of OspA human MAbs, including four shown to passively protect mice against experimental B. burgdorferi infection and one isolated from a patient with antibiotic refractory Lyme arthritis. The epitopes grouped into three spatially distinct bins that, together, encompass more than half the surface-exposed area of OspA. The bins corresponded to OspA ß-strands 8-10 (bin 1), 11-13 (bin 2), and 16-20 plus the C-terminal α-helix (bin 3). Bin 3 was further divided into sub-bins relative to LA-2's epitope. MAbs with complement-dependent borreliacidal activity, as well as B. burgdorferi transmission-blocking activity in the mouse model were found within each bin. Therefore, the resulting B cell epitope map encompasses functionally important targets on OspA that likely contribute to immunity to B. burgdorferi.


Subject(s)
Epitopes, B-Lymphocyte , Lyme Disease Vaccines , Humans , Mice , Animals , Mass Spectrometry , Lipoproteins
11.
Infect Immun ; 90(9): e0030622, 2022 09 15.
Article in English | MEDLINE | ID: mdl-36000876

ABSTRACT

Lyme disease vaccines based on recombinant Outer surface protein A (OspA) elicit protective antibodies that interfere with tick-to-host transmission of the disease-causing spirochete Borreliella burgdorferi. Another hallmark of OspA antisera and certain OspA monoclonal antibodies (MAbs) is their capacity to induce B. burgdorferi agglutination in vitro, a phenomenon first reported more than 30 years ago but never studied in molecular detail. In this report, we demonstrate that transmission-blocking OspA MAbs, individually and in combination, promote dose-dependent and epitope-specific agglutination of B. burgdorferi. Agglutination occurred within minutes and persisted for hours. Spirochetes in the core of the aggregates exhibited evidence of outer membrane (OM) stress, revealed by propidium iodide uptake. The most potent agglutinator was the mouse MAb LA-2, which targets the OspA C terminus (ß-strands 18 to 20). Human MAb 319-44, which also targets the OspA C terminus (ß-strand 20), and 857-2, which targets the OspA central ß-sheet (strands 8 to 10), were less potent agglutinators, while MAb 221-7, which targets ß-strands 10 to 11, had little to no measurable agglutinating activity, even though its affinity for OspA exceeded that of LA-2. Remarkably, monovalent Fab fragments derived from LA-2, and to a lesser degree 319-44, retained the capacity to induce B. burgdorferi aggregation and OM stress, a particularly intriguing observation considering that "LA-2-like" Fabs have been shown to experimentally entrap B. burgdorferi within infected ticks and prevent transmission during feeding to a mammalian host. It is therefore tempting to speculate that B. burgdorferi aggregation triggered by OspA-specific antibodies in vitro may in fact reflect an important biological activity in vivo.


Subject(s)
Borrelia burgdorferi Group , Borrelia burgdorferi , Lyme Disease , Ticks , Agglutination , Animals , Antibodies, Bacterial , Antibodies, Monoclonal , Antigens, Surface , Bacterial Outer Membrane Proteins , Bacterial Vaccines , Epitopes , Humans , Immune Sera , Immunoglobulin Fab Fragments , Lipoproteins , Lyme Disease Vaccines , Mammals , Mice , Propidium
12.
J Vet Med Educ ; : e20210105, 2022 May 21.
Article in English | MEDLINE | ID: mdl-35797491

ABSTRACT

While outcomes assessment is commonplace in colleges of veterinary medicine, no information is published on how veterinary colleges resource, administer, and view assessment. Consequently, this article has the following objectives: (a) to determine the current level of resources (personnel, committees, software) allocated toward education assessment and program evaluation in colleges of veterinary medicine, (b) to characterize any common organizational structures within colleges of veterinary medicine for assessment, (c) to determine assessment personnel (faculty and staff) perceptions regarding whether existing assessment resources and structures are sufficient, and (d) to examine the perceived strength of the culture of assessment. Our survey found that most assessment professionals had been in their position for 4 years or less and over 50% did not have formal assessment training. A majority of respondents agreed that assessment was encouraged and supported at their institution, but there was much less agreement on items related to formal plans and structures. For example, only one quarter of respondents reported that assessment was connected to planning and budgeting, and only one third reported having a formal assessment plan. We hope that our survey will be a resource tracking the development of assessment resources and climate at American colleges of veterinary medicine.

13.
J Biol Chem ; 298(4): 101742, 2022 04.
Article in English | MEDLINE | ID: mdl-35182523

ABSTRACT

During ricin intoxication in mammalian cells, ricin's enzymatic (RTA) and binding (RTB) subunits disassociate in the endoplasmic reticulum. RTA is then translocated into the cytoplasm where, by virtue of its ability to depurinate a conserved residue within the sarcin-ricin loop (SRL) of 28S rRNA, it functions as a ribosome-inactivating protein. It has been proposed that recruitment of RTA to the SRL is facilitated by ribosomal P-stalk proteins, whose C-terminal domains interact with a cavity on RTA normally masked by RTB; however, evidence that this interaction is critical for RTA activity within cells is lacking. Here, we characterized a collection of single-domain antibodies (VHHs) whose epitopes overlap with the P-stalk binding pocket on RTA. The crystal structures of three such VHHs (V9E1, V9F9, and V9B2) in complex with RTA revealed not only occlusion of the ribosomal P-stalk binding pocket but also structural mimicry of C-terminal domain peptides by complementarity-determining region 3. In vitro assays confirmed that these VHHs block RTA-P-stalk peptide interactions and protect ribosomes from depurination. Moreover, when expressed as "intrabodies," these VHHs rendered cells resistant to ricin intoxication. One VHH (V9F6), whose epitope was structurally determined to be immediately adjacent to the P-stalk binding pocket, was unable to neutralize ricin within cells or protect ribosomes from RTA in vitro. These findings are consistent with the recruitment of RTA to the SRL by ribosomal P-stalk proteins as a requisite event in ricin-induced ribosome inactivation.


Subject(s)
Ribosomal Proteins , Ricin , Single-Domain Antibodies , Animals , Epitopes/metabolism , Mammals/metabolism , Peptides/metabolism , RNA, Ribosomal, 28S/metabolism , Ribosomal Proteins/chemistry , Ribosomal Proteins/metabolism , Ribosomes/metabolism , Ricin/chemistry , Single-Domain Antibodies/metabolism
14.
Am J Pharm Educ ; 85(5): 8301, 2021 05.
Article in English | MEDLINE | ID: mdl-34283729

ABSTRACT

Objective. To determine areas of concern, and challenges to implementing and assessing the co-curriculum in accredited Doctor of Pharmacy programs, along with how confident programs are in their ability to meet the co-curriculum requirement as mandated by the Accreditation Council for Pharmacy Education (ACPE).Methods. A survey was administered to all ACPE-accredited pharmacy programs to collect information regarding areas of concern, challenges, and confidence in their ability to meet the co-curriculum requirement. The frequency of responses to items are presented along with comparisons based on characteristics, including institution type, cohort size, most recent ACPE accreditation review, and supporting offices.Results. The most common concerns centered on the documentation and assessment process. The most commonly reported challenges were lack of enthusiasm or buy-in from faculty, staff, and students; lack of a clear definition of co-curriculum; and faculty time and insufficient staff. Overall, programs had a high level of confidence in their ability to meet the requirements for co-curriculum. The only differences found were related to supporting offices and cohort size.Conclusion. The results suggest that having supporting offices may reduce the co-curriculum burden. Similarly, student cohort size may have an impact on the challenges for some programs, particularly those with moderate-sized cohorts reporting challenges related to faculty and staff. Further research is needed to determine how programs address these critical issues, and to explore whether programs report differently on these areas after completing an accreditation review. The study results may be useful to members of the Academy when evaluating co-curriculum.


Subject(s)
Education, Pharmacy , Pharmacy , Students, Pharmacy , Accreditation , Curriculum , Humans , Schools, Pharmacy
15.
J Mol Biol ; 433(15): 167086, 2021 07 23.
Article in English | MEDLINE | ID: mdl-34089718

ABSTRACT

Ricin toxin kills mammalian cells with notorious efficiency. The toxin's B subunit (RTB) is a Gal/GalNAc-specific lectin that attaches to cell surfaces and promotes retrograde transport of ricin's A subunit (RTA) to the trans Golgi network (TGN) and endoplasmic reticulum (ER). RTA is liberated from RTB in the ER and translocated into the cell cytoplasm, where it functions as a ribosome-inactivating protein. While antibodies against ricin's individual subunits have been reported, we now describe seven alpaca-derived, single-domain antibodies (VHHs) that span the RTA-RTB interface, including four Tier 1 VHHs with IC50 values <1 nM. Crystal structures of each VHH bound to native ricin holotoxin revealed three different binding modes, based on contact with RTA's F-G loop (mode 1), RTB's subdomain 2γ (mode 2) or both (mode 3). VHHs in modes 2 and 3 were highly effective at blocking ricin attachment to HeLa cells and immobilized asialofetuin, due to framework residues (FR3) that occupied the 2γ Gal/GalNAc-binding pocket and mimic ligand. The four Tier 1 VHHs also interfered with intracellular functions of RTB, as they neutralized ricin in a post-attachment cytotoxicity assay (e.g., the toxin was bound to cell surfaces before antibody addition) and reduced the efficiency of toxin transport to the TGN. We conclude that the RTA-RTB interface is a target of potent toxin-neutralizing antibodies that interfere with both extracellular and intracellular events in ricin's cytotoxic pathway.


Subject(s)
Antibodies, Neutralizing/pharmacology , Cytoplasm/metabolism , Endoplasmic Reticulum/metabolism , Golgi Apparatus/metabolism , Ricin/chemistry , Animals , Chlorocebus aethiops , Crystallography, X-Ray , HeLa Cells , Humans , Models, Molecular , Protein Conformation , Ricin/immunology , Single-Domain Antibodies/pharmacology , THP-1 Cells , Vero Cells
16.
J Clin Invest ; 131(11)2021 06 01.
Article in English | MEDLINE | ID: mdl-33914704

ABSTRACT

Disrupting transmission of Borrelia burgdorferi sensu lato complex (B. burgdorferi) from infected ticks to humans is one strategy to prevent the significant morbidity from Lyme disease. We have previously shown that an anti-OspA human mAb, 2217, prevents transmission of B. burgdorferi from infected ticks in animal models. Maintenance of a protective plasma concentration of a human mAb for tick season presents a significant challenge for a preexposure prophylaxis strategy. Here, we describe the optimization of mAb 2217 by amino acid substitutions (2217LS: M428L and N434S) in the Fc domain. The LS mutation led to a 2-fold increase in half-life in cynomolgus monkeys. In a rhesus macaque model, 2217LS protected animals from tick transmission of spirochetes at a dose of 3 mg/kg. Crystallographic analysis of Fab in complex with OspA revealed that 2217 bound an epitope that was highly conserved among the B. burgdorferi, B. garinii, and B. afzelii species. Unlike most vaccines that may require boosters to achieve protection, our work supports the development of 2217LS as an effective preexposure prophylaxis in Lyme-endemic regions, with a single dose at the beginning of tick season offering immediate protection that remains for the duration of exposure risk.


Subject(s)
Antibodies, Bacterial , Antibodies, Monoclonal/pharmacology , Borrelia burgdorferi , Lyme Disease , Amino Acid Substitution , Animals , Antibodies, Bacterial/genetics , Antibodies, Bacterial/immunology , Antibodies, Bacterial/pharmacology , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/immunology , Antigens, Surface/genetics , Antigens, Surface/immunology , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/immunology , Bacterial Vaccines/genetics , Bacterial Vaccines/immunology , Borrelia burgdorferi/genetics , Borrelia burgdorferi/immunology , Disease Models, Animal , Humans , Lipoproteins/genetics , Lipoproteins/immunology , Lyme Disease/drug therapy , Lyme Disease/genetics , Lyme Disease/immunology , Lyme Disease/transmission , Macaca fascicularis , Macaca mulatta , Male , Mice , Mice, Transgenic , Mutation, Missense , Ticks/immunology , Ticks/microbiology
17.
J Biol Chem ; 295(46): 15588-15596, 2020 11 13.
Article in English | MEDLINE | ID: mdl-32878986

ABSTRACT

The principal virulence factor of human pathogenic enterohemorrhagic Escherichia coli is Shiga toxin (Stx). Shiga toxin 2a (Stx2a) is the subtype most commonly associated with severe disease outcomes such as hemorrhagic colitis and hemolytic uremic syndrome. The catalytic A1 subunit (Stx2A1) binds to the conserved elongation factor binding C-terminal domain (CTD) of ribosomal P stalk proteins to inhibit translation. Stx2a holotoxin also binds to the CTD of P stalk proteins because the ribosome-binding site is exposed. We show here that Stx2a binds to an 11-mer peptide (P11) mimicking the CTD of P stalk proteins with low micromolar affinity. We cocrystallized Stx2a with P11 and defined their interactions by X-ray crystallography. We found that the last six residues of P11 inserted into a shallow pocket on Stx2A1 and interacted with Arg-172, Arg-176, and Arg-179, which were previously shown to be critical for binding of Stx2A1 to the ribosome. Stx2a formed a distinct P11-binding mode within a different surface pocket relative to ricin toxin A subunit and trichosanthin, suggesting different ribosome recognition mechanisms for each ribosome inactivating protein (RIP). The binding mode of Stx2a to P11 is also conserved among the different Stx subtypes. Furthermore, the P stalk protein CTD is flexible and adopts distinct orientations and interaction modes depending on the structural differences between the RIPs. Structural characterization of the Stx2a-ribosome complex is important for understanding the role of the stalk in toxin recruitment to the sarcin/ricin loop and may provide a new target for inhibitor discovery.


Subject(s)
Peptides/metabolism , Ribosomal Proteins/chemistry , Shiga Toxin 2/metabolism , Amino Acid Sequence , Binding Sites , Crystallography, X-Ray , Humans , Molecular Dynamics Simulation , Peptides/chemistry , Protein Binding , Ribosomal Proteins/metabolism , Ribosomes/metabolism , Ricin/chemistry , Ricin/metabolism , Shiga Toxin 2/chemistry , Trichosanthin/chemistry , Trichosanthin/metabolism
18.
Am J Pharm Educ ; 84(3): 7569, 2020 03.
Article in English | MEDLINE | ID: mdl-32313277

ABSTRACT

Objective. To determine how accredited Doctor of Pharmacy programs implement and evaluate the co-curriculum requirement as mandated by the Accreditation Council for Pharmacy Education (ACPE). Methods. A survey was administered to all ACPE-accredited pharmacy programs to collect information regarding how co-curriculum models were being implemented, including types of activities, structure, learning outcomes, oversight, and assessment. The frequency of responses to items were presented to describe the general features of co-curriculum models. Results. The types of co-curricular activities reported by programs were generally consistent, with the majority of programs categorizing these activities and allowing students to choose which they would engage in. Most respondents reported that the program mapped co-curricular activities to learning outcomes, primarily ACPE Standards 1-4. The structural oversight of the co-curriculum typically included a co-curriculum committee, subcommittee, or task force, and supporting offices. The most common offices/departments involved in the co-curriculum were assessment, student affairs/services, experiential education, and academic/curricular affairs. The most common assessments were reflections, self-assessment surveys, and checklists. Conclusion. In most programs, implementation of the co-curriculum was a joint effort among various individuals, committees, and offices. Given the developing nature of programs, descriptive studies should be repeated to identify how programs develop and enhance co-curriculum models. The study results may be useful to members of the Academy when evaluating the current state of co-curriculum implementation and potential areas for program development.


Subject(s)
Curriculum/standards , Education, Pharmacy/standards , Accreditation , Education, Pharmacy/organization & administration , Humans , Learning , Models, Educational , Program Development , Schools, Pharmacy , Self-Assessment , Students, Pharmacy , Surveys and Questionnaires
19.
J Mol Biol ; 432(4): 1109-1125, 2020 02 14.
Article in English | MEDLINE | ID: mdl-31931008

ABSTRACT

The extreme potency of the plant toxin, ricin, is due to its enzymatic subunit, RTA, which inactivates mammalian ribosomes with near-perfect efficiency. Here we characterized, at the functional and structural levels, seven alpaca single-domain antibodies (VHHs) previously reported to recognize epitopes in proximity to RTA's active site. Three of the VHHs, V2A11, V8E6, and V2G10, were potent inhibitors of RTA in vitro and protected Vero cells from ricin when expressed as intracellular antibodies ("intrabodies"). Crystal structure analysis revealed that the complementarity-determining region 3 (CDR3) elements of V2A11 and V8E6 penetrate RTA's active site and interact with key catalytic residues. V2G10, by contrast, sits atop the enzymatic pocket and occludes substrate accessibility. The other four VHHs also penetrated/occluded RTA's active site, but lacked sufficient binding affinities to outcompete RTA-ribosome interactions. Intracellular delivery of high-affinity, single-domain antibodies may offer a new avenue in the development of countermeasures against ricin toxin.toxin, antibody, structure, intracellular.


Subject(s)
Antibodies, Neutralizing/immunology , Ricin/chemistry , Ricin/immunology , Single-Domain Antibodies/immunology , Animals , Antibodies, Neutralizing/metabolism , Binding Sites, Antibody , Catalytic Domain , Chlorocebus aethiops , Enzyme-Linked Immunosorbent Assay , Polymerase Chain Reaction , Single-Domain Antibodies/metabolism , Surface Plasmon Resonance , Vero Cells
20.
Am J Pharm Educ ; 83(7): 7204, 2019 09.
Article in English | MEDLINE | ID: mdl-31619832

ABSTRACT

Objective. To provide a practical guide to examination item writing, item statistics, and score adjustment for use by pharmacy and other health professions educators. Findings. Each examination item type possesses advantages and disadvantages. Whereas selected response items allow for efficient assessment of student recall and understanding of content, constructed response items appear better suited for assessment of higher levels of Bloom's taxonomy. Although clear criteria have not been established, accepted ranges for item statistics and examination reliability have been identified. Existing literature provides guidance on when instructors should consider revising or removing items from future examinations based on item statistics and review, but limited information is available on performing score adjustments. Summary. Instructors should select item types that align with the intended learning objectives to be measured on the examination. Ideally, an examination will consist of multiple item types to capitalize on the advantages and limit the effects of any disadvantages associated with a specific item format. Score adjustments should be performed judiciously and by considering all available item information. Colleges and schools should consider developing item writing and score adjustment guidelines to promote consistency.


Subject(s)
Education, Pharmacy/standards , Educational Measurement/standards , Students, Pharmacy/psychology , Humans , Learning , Reproducibility of Results , Schools, Pharmacy
SELECTION OF CITATIONS
SEARCH DETAIL
...