Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Food Microbiol ; 407: 110391, 2023 Dec 16.
Article in English | MEDLINE | ID: mdl-37742524

ABSTRACT

The presence of foodborne protozoan pathogens including Cryptosporidium parvum, Giardia duodenalis, Toxoplasma gondii, and Cyclospora cayetanensis in commercial shellfish has been reported across diverse geographical regions. In the present study, a novel multiplex nested polymerase chain reaction (PCR) assay was validated to simultaneously detect and discriminate these four targeted parasites in oyster tissues including whole tissue homogenate, digestive gland, gills, and hemolymph, as well as seawater where shellfish grow. To differentiate viable and non-viable protozoan (oo)cysts, we further evaluated reverse transcription quantitative PCR (RT-qPCR) assays through systematic laboratory spiking experiments by spiking not only dilutions of viable parasites but also mixtures of viable and non-viable parasites in the oyster tissues and seawater. Results demonstrate that multiplex PCR can detect as few as 5-10 (oo)cysts in at least one oyster matrix, as well as in 10 L of seawater. All parasites were detected at the lowest spiking dilution (5 (oo)cysts per extract) in hemolymph, however the probability of detection varied across the difference matrices tested for each parasite. RT-qPCR further discriminated viable from non-viable (heat-inactivated) C. parvum and T. gondii in seawater and hemolymph but did not perform well in other oyster matrices. This systematic spiking study demonstrates that a molecular approach combining multiplex PCR for sensitive and affordable screening of protozoan DNA and subsequent RT-qPCR assay for viability discrimination presents an important advance for accurately determining the risk of protozoal illness in humans due to consumption of contaminated shellfish.


Subject(s)
Cryptosporidiosis , Cryptosporidium , Ostreidae , Animals , Humans , Cryptosporidium/genetics , Cryptosporidiosis/parasitology , Multiplex Polymerase Chain Reaction/methods , Seawater , DNA, Protozoan
2.
Sci Total Environ ; 858(Pt 1): 159680, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36306854

ABSTRACT

Wastewater-based epidemiology (WBE) has been deployed broadly as an early warning tool for emerging COVID-19 outbreaks. WBE can inform targeted interventions and identify communities with high transmission, enabling quick and effective responses. As the wastewater (WW) becomes an increasingly important indicator for COVID-19 transmission, more robust methods and metrics are needed to guide public health decision-making. This research aimed to develop and implement a mathematical framework to infer incident cases of COVID-19 from SARS-CoV-2 levels measured in WW. We propose a classification scheme to assess the adequacy of model training periods based on clinical testing rates and assess the sensitivity of model predictions to training periods. A testing period is classified as adequate when the rate of change in testing is greater than the rate of change in cases. We present a Bayesian deconvolution and linear regression model to estimate COVID-19 cases from WW data. The effective reproductive number is estimated from reconstructed cases using WW. The proposed modeling framework was applied to three Northern California communities served by distinct WW treatment plants. The results showed that training periods with adequate testing are essential to provide accurate projections of COVID-19 incidence.


Subject(s)
COVID-19 , Wastewater , Humans , Viral Load , Incidence , COVID-19/epidemiology , SARS-CoV-2 , Bayes Theorem
3.
Sci Rep ; 12(1): 6532, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35474071

ABSTRACT

Plastics are widely recognized as a pervasive marine pollutant. Microplastics have been garnering increasing attention due to reports documenting their ingestion by animals, including those intended for human consumption. Their accumulation in the marine food chain may also pose a threat to wildlife that consume species that can accumulate microplastic particles. Microplastic contamination in marine ecosystems has thus raised concerns for both human and wildlife health. Our study addresses an unexplored area of research targeting the interaction between plastic and pathogen pollution of coastal waters. We investigated the association of the zoonotic protozoan parasites Toxoplasma gondii, Cryptosporidium parvum, and Giardia enterica with polyethylene microbeads and polyester microfibers. These pathogens were chosen because they have been recognized by the World Health Organization as underestimated causes of illness from shellfish consumption, and due to their persistence in the marine environment. We show that pathogens are capable of associating with microplastics in contaminated seawater, with more parasites adhering to microfiber surfaces as compared with microbeads. Given the global presence of microplastics in fish and shellfish, this study demonstrates a novel pathway by which anthropogenic pollutants may be mediating pathogen transmission in the marine environment, with important ramifications for wildlife and human health.


Subject(s)
Cryptosporidiosis , Cryptosporidium , Parasites , Water Pollutants, Chemical , Animals , Animals, Wild , Ecosystem , Humans , Microplastics , Plastics , Seawater , Water Pollutants, Chemical/analysis
4.
Food Microbiol ; 99: 103816, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34119101

ABSTRACT

Protozoan contamination in produce is of growing importance due to their capacity to cause illnesses in consumers of fresh leafy greens. Viability assays are essential to accurately estimate health risk caused by viable parasites that contaminate food. We evaluated the efficacy of reverse transcription quantitative PCR (RT-qPCR), propidium monoazide coupled with (q)PCR, and viability staining using propidium iodide through systematic laboratory spiking experiments for selective detection of viable Cryptosporidium parvum, Giardia enterica, and Toxoplasma gondii. In the presence of only viable protozoa, the RT-qPCR assays could accurately detect two to nine (oo)cysts/g spinach (in 10 g processed). When different proportions of viable and inactivated parasite were spiked, mRNA concentrations correlated with increasing proportions of viable (oo)cysts, although low levels of false-positive mRNA signals were detectable in the presence of high amounts of inactivated protozoa. Our study demonstrated that among the methods tested, RT-qPCR performed more effectively to discriminate viable from inactivated C. parvum, G. enterica and T. gondii on spinach. This application of viability methods on leafy greens can be adopted by the produce industry and regulatory agencies charged with protection of human public health to screen leafy greens for the presence of viable protozoan pathogen contamination.


Subject(s)
Cryptosporidium parvum/isolation & purification , Food Parasitology/methods , Giardia/isolation & purification , Spinacia oleracea/parasitology , Toxoplasma/isolation & purification , Animals , Azides/chemistry , Cryptosporidium parvum/chemistry , Cryptosporidium parvum/genetics , Cryptosporidium parvum/growth & development , Food Contamination/analysis , Giardia/chemistry , Giardia/genetics , Giardia/growth & development , Oocysts/chemistry , Oocysts/growth & development , Oocysts/isolation & purification , Plant Leaves/parasitology , Propidium/analogs & derivatives , Propidium/chemistry , Real-Time Polymerase Chain Reaction , Staining and Labeling , Toxoplasma/chemistry , Toxoplasma/genetics , Toxoplasma/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...