Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Antioxidants (Basel) ; 11(12)2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36552646

ABSTRACT

Oxidative stress (OS) is one of the neuropathological mechanisms responsible for the deficits in cognition and neuronal function in Down syndrome (DS). The Ts65Dn (TS) mouse replicates multiple DS phenotypes including hippocampal-dependent learning and memory deficits and similar brain oxidative status. To better understand the hippocampal oxidative profile in the adult TS mouse, we analyzed cellular OS-associated alterations in hippocampal granule cells (GCs), a neuronal population that plays an important role in memory formation and that is particularly affected in DS. For this purpose, we used biochemical, molecular, immunohistochemical, and electron microscopy techniques. Our results indicate that TS GCs show important OS-associated alterations in the systems essential for neuronal homeostasis: DNA damage response and proteostasis, particularly of the proteasome and lysosomal system. Specifically, TS GCs showed: (i) increased DNA damage, (ii) reorganization of nuclear proteolytic factories accompanied by a decline in proteasome activity and cytoplasmic aggregation of ubiquitinated proteins, (iii) formation of lysosomal-related structures containing lipid droplets of cytotoxic peroxidation products, and (iv) mitochondrial ultrastructural defects. These alterations could be implicated in enhanced cellular senescence, accelerated aging and neurodegeneration, and the early development of Alzheimer's disease neuropathology present in TS mice and the DS population.

2.
Nutr Neurosci ; 25(7): 1400-1412, 2022 Jul.
Article in English | MEDLINE | ID: mdl-33345728

ABSTRACT

OBJECTIVES: The brains of individuals with Down syndrome (DS) present defects in neurogenesis and synaptogenesis during prenatal and early postnatal stages that are partially responsible for their cognitive disabilities. Because oleic and linolenic fatty acids enhance neurogenesis, synaptogenesis, and cognitive abilities in rodents and humans, in this study we evaluated the ability of these compounds to restore these altered phenotypes in the Ts65Dn (TS) mouse model of DS during early postnatal stages. METHODS: TS and euploid mice were treated with oleic or linolenic acid from PD3 to PD15, and the short- and long- term effects of these acids on neurogenesis and synaptogenesis were evaluated. The effects of these treatments on the cognitive abilities of TS mice during early adulthood were also evaluated. RESULTS: Administration of oleic or linolenic acid did not modify cell proliferation immediately after treatment discontinuation or several weeks later. However, oleic acid increased the total number of DAPI+ cells (+ 26%), the percentage of BrdU+ cells that acquired a neural phenotype (+ 9.1%), the number of pre- (+ 29%) and post-synaptic (+ 32%) terminals and the cognitive abilities of TS mice (+ 18.1%). In contrast, linolenic acid only produced a slight cognitive improvement in TS mice. (+12.1%). DISCUSSION: These results suggest that early postnatal administration of oleic acid could palliate the cognitive deficits of DS individuals.


Subject(s)
Down Syndrome , Animals , Cognition , Disease Models, Animal , Down Syndrome/genetics , Down Syndrome/therapy , Female , Hippocampus , Mice , Mice, Inbred C57BL , Mice, Transgenic , Oleic Acid , Pregnancy , alpha-Linolenic Acid/therapeutic use
3.
Front Pharmacol ; 12: 613211, 2021.
Article in English | MEDLINE | ID: mdl-33935706

ABSTRACT

All individuals with Down syndrome (DS) eventually develop Alzheimer's disease (AD) neuropathology, including neurodegeneration, increases in ß-amyloid (Aß) expression, and aggregation and neurofibrillary tangles, between the third and fourth decade of their lives. There is currently no effective treatment to prevent AD neuropathology and the associated cognitive degeneration in DS patients. Due to evidence that the accumulation of Aß aggregates in the brain produces the neurodegenerative cascade characteristic of AD, many strategies which promote the clearance of Aß peptides have been assessed as potential therapeutics for this disease. Bexarotene, a member of a subclass of retinoids that selectively activates retinoid receptors, modulates several pathways essential for cognitive performance and Aß clearance. Consequently, bexarotene might be a good candidate to treat AD-associated neuropathology. However, the effects of bexarotene treatment in AD remain controversial. In the present study, we aimed to elucidate whether chronic bexarotene treatment administered to the most commonly used murine model of DS, the Ts65Dn (TS) mouse could reduce Aß expression in their brains and improve their cognitive abilities. Chronic administration of bexarotene to aged TS mice and their CO littermates for 9 weeks diminished the reference, working, and spatial learning and memory of TS mice, and the spatial memory of CO mice in the Morris water maze. This treatment also produced marked hypoactivity in the plus maze, open field, and hole board tests in TS mice, and in the open field and hole board tests in CO mice. Administration of bexarotene reduced the expression of Aß1-40, but not of Aß1-42, in the hippocampi of TS mice. Finally, bexarotene increased Thyroid-stimulating hormone levels in TS mice and reduced Thyroid-stimulating hormone levels in CO mice, while animals of both karyotypes displayed reduced thyroxine levels after bexarotene administration. The bexarotene-induced hypothyroidism could be responsible for the hypoactivity of TS and CO mice and their diminished performance in the Morris water maze. Together, these results do not provide support for the use of bexarotene as a potential treatment of AD neuropathology in the DS population.

4.
Int J Mol Sci ; 22(3)2021 Jan 27.
Article in English | MEDLINE | ID: mdl-33514010

ABSTRACT

Down syndrome (DS) or trisomy of chromosome 21 (Hsa21) is characterized by impaired hippocampal-dependent learning and memory. These alterations are due to defective neurogenesis and to neuromorphological and functional anomalies of numerous neuronal populations, including hippocampal granular cells (GCs). It has been proposed that the additional gene dose in trisomic cells induces modifications in nuclear compartments and on the chromatin landscape, which could contribute to some DS phenotypes. The Ts65Dn (TS) mouse model of DS carries a triplication of 92 genes orthologous to those found in Hsa21, and shares many phenotypes with DS individuals, including cognitive and neuromorphological alterations. Considering its essential role in hippocampal memory formation, we investigated whether the triplication of this set of Hsa21 orthologous genes in TS mice modifies the nuclear architecture of their GCs. Our results show that the TS mouse presents alterations in the nuclear architecture of its GCs, affecting nuclear compartments involved in transcription and pre-rRNA and pre-mRNA processing. In particular, the GCs of the TS mouse show alterations in the nucleolar fusion pattern and the molecular assembly of Cajal bodies (CBs). Furthermore, hippocampal GCs of TS mice present an epigenetic dysregulation of chromatin that results in an increased heterochromatinization and reduced global transcriptional activity. These nuclear alterations could play an important role in the neuromorphological and/or functional alterations of the hippocampal GCs implicated in the cognitive dysfunction characteristic of TS mice.


Subject(s)
Chromatin/genetics , Down Syndrome/genetics , Hippocampus/metabolism , Neurons/metabolism , Animals , Brain/metabolism , Brain/pathology , Cell Nucleolus/genetics , Cell Nucleolus/metabolism , Cognition/physiology , Coiled Bodies/genetics , Coiled Bodies/metabolism , Disease Models, Animal , Down Syndrome/pathology , Hippocampus/pathology , Humans , Memory/physiology , Mice , Mice, Transgenic , Neurogenesis/genetics , Neurogenesis/physiology , Neurons/pathology
5.
Int J Mol Sci ; 21(18)2020 Sep 20.
Article in English | MEDLINE | ID: mdl-32962300

ABSTRACT

Down syndrome (DS), the most common cause of intellectual disability of genetic origin, is characterized by alterations in central nervous system morphology and function that appear from early prenatal stages. However, by the fourth decade of life, all individuals with DS develop neuropathology identical to that found in sporadic Alzheimer's disease (AD), including the development of amyloid plaques and neurofibrillary tangles due to hyperphosphorylation of tau protein, loss of neurons and synapses, reduced neurogenesis, enhanced oxidative stress, and mitochondrial dysfunction and neuroinflammation. It has been proposed that DS could be a useful model for studying the etiopathology of AD and to search for therapeutic targets. There is increasing evidence that the neuropathological events associated with AD are interrelated and that many of them not only are implicated in the onset of this pathology but are also a consequence of other alterations. Thus, a feedback mechanism exists between them. In this review, we summarize the signalling pathways implicated in each of the main neuropathological aspects of AD in individuals with and without DS as well as the interrelation of these pathways.


Subject(s)
Alzheimer Disease/metabolism , Brain/metabolism , Down Syndrome/metabolism , Signal Transduction , Alzheimer Disease/complications , Alzheimer Disease/pathology , Amyloid/metabolism , Brain/pathology , Down Syndrome/complications , Down Syndrome/pathology , Humans
6.
J Nutr ; 150(9): 2478-2489, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32729926

ABSTRACT

BACKGROUND: The cognitive dysfunction in Down syndrome (DS) is partially caused by deficient neurogenesis during fetal stages. Curcumin enhances neurogenesis and learning and memory. OBJECTIVES: We aimed to test the ability of curcumin to rescue the neuromorphological and cognitive alterations of the Ts65Dn (TS) mouse model of DS when administered prenatally or during early postnatal stages, and to evaluate whether these effects were maintained several weeks after the treatment. METHODS: To evaluate the effects of prenatal curcumin administration, 65 pregnant TS females were subcutaneously treated with curcumin (300 mg/kg) or vehicle from ED (Embryonic Day) 10 to PD (Postnatal Day) 2. All the analyses were performed on their TS and Control (CO) male and female progeny. At PD2, the changes in neurogenesis, cellularity, and brain weight were analyzed in 30 TS and CO pups. The long-term effects of prenatal curcumin were evaluated in another cohort of 44 TS and CO mice between PD30 and PD45. The neuromorphological effects of the early postnatal administration of curcumin were assessed on PD15 in 30 male and female TS and CO pups treated with curcumin (300 mg/kg) or vehicle from PD2 to PD15. The long-term neuromorphological and cognitive effects were assessed from PD60 to PD90 in 45 mice. Data was compared by ANOVAs. RESULTS: Prenatal administration of curcumin increased the brain weight (+45%, P < 0.001), the density of BrdU (bromodeoxyuridine)- (+150%, P < 0.001) and DAPI (4',6-diamidino-2-phenylindole)- (+38%, P = 0.005) positive cells, and produced a long-term improvement of cognition in TS (+35%, P = 0.007) mice with respect to vehicle-treated mice. Postnatal administration of curcumin did not rescue any of the short- or long-term altered phenotypes of TS mice. CONCLUSION: The beneficial effects of prenatal curcumin administration to TS mice suggest that it could be a therapeutic strategy to treat DS cognitive disabilities.


Subject(s)
Brain/growth & development , Cognition/drug effects , Curcumin/pharmacology , Down Syndrome/drug therapy , Neurogenesis/drug effects , Animal Feed/analysis , Animals , Brain/drug effects , Curcumin/administration & dosage , Diet/veterinary , Drug Administration Schedule , Female , Injections, Subcutaneous , Male , Mice , Mice, Transgenic , Pregnancy , Prenatal Exposure Delayed Effects
7.
J Nutr ; 150(6): 1631-1643, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32243527

ABSTRACT

BACKGROUND: The cognitive impairments that characterize Down syndrome (DS) have been attributed to brain hypocellularity due to neurogenesis impairment during fetal stages. Thus, enhancing prenatal neurogenesis in DS could prevent or reduce some of the neuromorphological and cognitive defects found in postnatal stages. OBJECTIVES: As fatty acids play a fundamental role in morphogenesis and brain development during fetal stages, in this study, we aimed to enhance neurogenesis and the cognitive abilities of the Ts65Dn (TS) mouse model of DS by administering oleic or linolenic acid. METHODS: In total, 85 pregnant TS females were subcutaneously treated from Embryonic Day (ED) 10 until Postnatal Day (PD) 2 with oleic acid (400 mg/kg), linolenic acid (500 mg/kg), or vehicle. All analyses were performed on their TS and Control (CO) male and female progeny. At PD2, we evaluated the short-term effects of the treatments on neurogenesis, cellularity, and brain weight, in 40 TS and CO pups. A total of 69 TS and CO mice were used to test the long-term effects of the prenatal treatments on cognition from PD30 to PD45, and on neurogenesis, cellularity, and synaptic markers, at PD45. Data were compared by ANOVAs. RESULTS: Prenatal administration of oleic or linolenic acid increased the brain weight (+36.7% and +45%, P < 0.01), the density of BrdU (bromodeoxyuridine)- (+80% and +115%; P < 0.01), and DAPI (4',6-diamidino-2-phenylindole)-positive cells (+64% and +22%, P < 0.05) of PD2 TS mice with respect to the vehicle-treated TS mice. Between PD30 and PD45, TS mice prenatally treated with oleic or linolenic acid showed better cognitive abilities (+28% and +25%, P < 0.01) and a higher density of the postsynaptic marker PSD95 (postsynaptic density protein 95) (+65% and +44%, P < 0.05) than the vehicle-treated TS animals. CONCLUSION: The beneficial cognitive and neuromorphological effects induced by oleic or linolenic acid in TS mice suggest that they could be promising pharmacotherapies for DS-associated cognitive deficits.


Subject(s)
Down Syndrome/physiopathology , Maternal Exposure , Oleic Acid/administration & dosage , alpha-Linolenic Acid/administration & dosage , Animals , Body Weight/drug effects , Brain/drug effects , Cognition/drug effects , Disease Models, Animal , Down Syndrome/pathology , Female , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Mice, Transgenic , Neurogenesis/drug effects , Oleic Acid/pharmacology , Organ Size/drug effects , Pregnancy , Prenatal Exposure Delayed Effects , alpha-Linolenic Acid/pharmacology
8.
Front Cell Neurosci ; 14: 16, 2020.
Article in English | MEDLINE | ID: mdl-32116562

ABSTRACT

Cellular senescence is a homeostatic biological process characterized by a permanent state of cell cycle arrest that can contribute to the decline of the regenerative potential and function of tissues. The increased presence of senescent cells in different neurodegenerative diseases suggests the contribution of senescence in the pathophysiology of these disorders. Although several factors can induce senescence, DNA damage, oxidative stress, neuroinflammation, and altered proteostasis have been shown to play a role in its onset. Oxidative stress contributes to accelerated aging and cognitive dysfunction stages affecting neurogenesis, neuronal differentiation, connectivity, and survival. During later life stages, it is implicated in the progression of cognitive decline, synapse loss, and neuronal degeneration. Also, neuroinflammation exacerbates oxidative stress, synaptic dysfunction, and neuronal death through the harmful effects of pro-inflammatory cytokines on cell proliferation and maturation. Both oxidative stress and neuroinflammation can induce DNA damage and alterations in DNA repair that, in turn, can exacerbate them. Another important feature associated with senescence is altered proteostasis. Because of the disruption in the function and balance of the proteome, senescence can modify the proper synthesis, folding, quality control, and degradation rate of proteins producing, in some diseases, misfolded proteins or aggregation of abnormal proteins. There is an extensive body of literature that associates cellular senescence with several neurodegenerative disorders including Alzheimer's disease (AD), Down syndrome (DS), and Parkinson's disease (PD). This review summarizes the evidence of the shared neuropathological events in these neurodegenerative diseases and the implication of cellular senescence in their onset or aggravation. Understanding the role that cellular senescence plays in them could help to develop new therapeutic strategies.

9.
Sci Rep ; 10(1): 4790, 2020 03 16.
Article in English | MEDLINE | ID: mdl-32179814

ABSTRACT

Chemotherapeutics are sometimes administered with drugs, like antiangiogenic compounds, to increase their effectiveness. Melatonin exerts antitumoral actions through antiangiogenic actions. We studied if melatonin regulates the response of HUVECs to chemotherapeutics (docetaxel and vinorelbine). The inhibition that these agents exert on some of the processes involved in angiogenesis, such as, cell proliferation, migratory capacity or vessel formation, was enhanced by melatonin. Regarding to estrogen biosynthesis, melatonin impeded the negative effect of vinorelbine, by decreasing the activity and expression of aromatase and sulfatase. Docetaxel and vinorelbine increased the expression of VEGF-A, VEGF-B, VEGF-C, VEGFR-1, VEGFR-3, ANG1 and/or ANG-2 and melatonin inhibited these actions. Besides, melatonin prevented the positive actions that docetaxel exerts on the expression of other factors related to angiogenesis like JAG1, ANPEP, IGF-1, CXCL6, AKT1, ERK1, ERK2, MMP14 and NOS3 and neutralized the stimulating actions of vinorelbine on the expression of FIGF, FGFR3, CXCL6, CCL2, ERK1, ERK2, AKT1, NOS3 and MMP14. In CAM assay melatonin inhibited new vascularization in combination with chemotherapeutics. Melatonin further enhanced the chemotherapeutics-induced inhibition of p-AKT and p-ERK and neutralized the chemotherapeutics-caused stimulatory effect on HUVECs permeability by modifying the distribution of VE cadherin. Our results confirm that melatonin blocks proangiogenic and potentiates antiangiogenic effects induced by docetaxel and vinorelbine enhancing their antitumor effectiveness.


Subject(s)
Angiogenesis Inhibitors , Antineoplastic Agents , Docetaxel/pharmacology , Melatonin/pharmacology , Neoplasms/blood supply , Neoplasms/pathology , Vinorelbine/pharmacology , Drug Synergism , Gene Expression/drug effects , Human Umbilical Vein Endothelial Cells , Humans , Insulin-Like Growth Factor I/genetics , Insulin-Like Growth Factor I/metabolism , Jagged-1 Protein/genetics , Jagged-1 Protein/metabolism , Neoplasms/genetics , Neovascularization, Pathologic/genetics , Receptor, Fibroblast Growth Factor, Type 3/genetics , Receptor, Fibroblast Growth Factor, Type 3/metabolism , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor D/genetics , Vascular Endothelial Growth Factor D/metabolism
10.
Prog Brain Res ; 251: 245-268, 2020.
Article in English | MEDLINE | ID: mdl-32057309

ABSTRACT

Neurodevelopmental disorders are challenging to study in the laboratory, and despite a large investment, few novel treatments have been developed in the last decade. While animal models have been valuable in elucidating disease mechanisms and in providing insights into the function of specific genes, the predictive validity of preclinical models to test potential therapies has been questioned. In the last two decades, diverse new murine models of Down syndrome (DS) have been developed and numerous studies have demonstrated neurobiological alterations that could be responsible for the cognitive and behavioral phenotypes found in this syndrome. In many cases, similar alterations were found in murine models and in individuals with DS, although several phenotypes shown in animals have yet not been confirmed in the human condition. Some of the neurobiological alterations observed in mice have been proposed to account for their changes in cognition and behavior, and have received special attention because of being putative therapeutic targets. Those include increased oxidative stress, altered neurogenesis, overexpression of the Dyrk1A gene, GABA-mediated overinhibition and Alzheimer's disease-related neurodegeneration. Subsequently, different laboratories have tested the efficacy of pharmacotherapies targeting these alterations. Unfortunately, animal models are limited in their ability to mimic the extremely complex process of human neurodevelopment and neuropathology. Therefore, the safety and efficacy identified in animal studies are not always translated to humans, and most of the drugs tested have not demonstrated any positive effect or very limited efficacy in clinical trials. Despite their limitations, though, animal trials give us extremely valuable information for developing and testing drugs for human use that cannot be obtained from molecular or cellular experiments alone. This chapter reviews some of these therapeutic approaches and discusses some reasons that could account for the discrepancy between the findings in mouse models of DS and in humans, including: (i) the incomplete resemble of the genetic alterations of available mouse models of DS and human trisomy 21, (ii) the lack of evidence that some of the phenotypic alterations found in mice (e.g., GABA-mediated overinhibition, and alterations in adult neurogenesis) are also present in DS individuals, and (iii) the inaccuracy and/or inadequacy of the methods used in clinical trials to detect changes in the cognitive and behavioral functions of people with DS. Despite the shortcomings of animal models, animal experimentation remains an invaluable tool in developing drugs. Thus, we will also discuss how to increase predictive validity of mouse models.


Subject(s)
Alzheimer Disease , Disease Models, Animal , Down Syndrome , Translational Research, Biomedical/standards , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Animals , Down Syndrome/drug therapy , Down Syndrome/genetics , Down Syndrome/metabolism
11.
Front Physiol ; 10: 879, 2019.
Article in English | MEDLINE | ID: mdl-31354524

ABSTRACT

Radiotherapy is a part of cancer treatment. To improve its efficacy has been combined with radiosensitizers such as antiangiogenic agents. Among the mechanisms of the antitumor action of melatonin are antiangiogenic effects. Our goal was to investigate whether melatonin may modulate the sensitivity of endothelial cells (HUVECs) to ionizing radiation. Melatonin (1 mM) enhanced the inhibition induced by radiation on different steps of the angiogenic process, cell proliferation, migration, and tubular network formation. In relation with the activity and expression of enzymes implicated in estrogen synthesis, in co-cultures HUVECs/MCF-7, radiation down-regulated aromatase mRNA expression, aromatase endothelial-specific promoter I.7, sulfatase activity and expression and 17ß-HSD1 activity and expression and melatonin enhanced these effects. Radiation and melatonin induced a significant decrease in VEGF, ANG-1, and ANG-2 mRNA expression. In ANG-2 and VEGF mRNA expression melatonin potentiated the inhibitory effect induced by radiation. In addition, melatonin counteracted the stimulatory effect of radiation on FGFR3, TGFα, JAG1, IGF-1, and KDR mRNA expression and reduced ANPEP expression. In relation with extracellular matrix molecules, radiation increased MMP14 mRNA expression and melatonin counteracted the stimulatory effect of radiation on MMP14 mRNA expression and increased TIMP1 expression, an angiogenesis inhibitor. Melatonin also counteracted the stimulatory effect of radiation on CXCL6, CCL2, ERK1, ERK2, and AKT1 mRNA expression and increased the inhibitory effect of radiation on NOS3 expression. In CAM assay, melatonin enhanced the reduction of the vascular area induced by radiation. Melatonin potentiated the inhibitory effect on the activation of p-AKT and p-ERK exerted by radiation. Antiangiogenic effect of melatonin could be mediated through AKT and ERK pathways, proteins involved in vascular endothelial (VE) cell growth, cell proliferation, survival, migration, and angiogenesis. In addition, radiation increased endothelial cell permeability and melatonin counteracted it by regulating the internalization of VE-cadherin. Radiation has some side effects on angiogenesis that may reduce its effectiveness against tumor growth and melatonin is able to neutralize these negative actions of radiation. Additionally, melatonin potentiated radiation-induced antiangiogenic actions on several steps of the angiogenic process and enhanced its antitumor action. Our findings point to melatonin as a useful molecule as adjuvant to radiotherapy in cancer treatment.

12.
Brain Behav Immun ; 73: 235-251, 2018 10.
Article in English | MEDLINE | ID: mdl-29758264

ABSTRACT

Down syndrome (DS) is characterized by structural and functional anomalies that are present prenatally and that lead to intellectual disabilities. Later in life, the cognitive abilities of DS individuals progressively deteriorate due to the development of Alzheimer's disease (AD)-associated neuropathology (i.e., ß-amyloid (Aß) plaques, neurofibrillary tangles (NFTs), neurodegeneration, synaptic pathology, neuroinflammation and increased oxidative stress). Increasing evidence has shown that among these pathological processes, neuroinflammation plays a predominant role in AD etiopathology. In AD mouse models, increased neuroinflammation appears earlier than Aß plaques and NFTs, and in DS and AD models, neuroinflammation exacerbates the levels of soluble and insoluble Aß species, favoring neurodegeneration. The Ts65Dn (TS) mouse, the most commonly used murine model of DS, recapitulates many alterations present in both DS and AD individuals, including enhanced neuroinflammation. In this study, we observed an altered neuroinflammatory milieu in the hippocampus of the TS mouse model. Pro-inflammatory mediators that were elevated in the hippocampus of this model included pro-inflammatory cytokine IL17A, which has a fundamental role in mediating brain damage in neuroinflammatory processes. Here, we analyzed the ability of an anti-IL17A antibody to reduce the neuropathological alterations that are present in TS mice during early neurodevelopmental stages (i.e., hippocampal neurogenesis and hypocellularity) or that are aggravated in later-life stages (i.e., cognitive abilities, cholinergic neuronal loss and increased cellular senescence, APP expression, Aß peptide expression and neuroinflammation). Administration of anti-IL17 for 5 months, starting at the age of 7 months, partially improved the cognitive abilities of the TS mice, reduced the expression of several pro-inflammatory cytokines and the density of activated microglia and normalized the APP and Aß1-42 levels in the hippocampi of the TS mice. These results suggest that IL17-mediated neuroinflammation is involved in several AD phenotypes in TS mice and provide a new therapeutic target to reduce these pathological characteristics.


Subject(s)
Down Syndrome/immunology , Interleukin-17/immunology , Interleukin-17/metabolism , Alzheimer Disease/immunology , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Animals , Disease Models, Animal , Down Syndrome/therapy , Female , Hippocampus/physiology , Interleukin-17/antagonists & inhibitors , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neurofibrillary Tangles/metabolism , Neurogenesis , Neuroimmunomodulation/physiology , Oxidative Stress , Phenotype , Plaque, Amyloid/metabolism
13.
Neurobiol Dis ; 110: 206-217, 2018 02.
Article in English | MEDLINE | ID: mdl-29221819

ABSTRACT

Down syndrome (DS) is characterized by a marked reduction in the size of the brain and cerebellum. These changes play an important role in the motor alterations and cognitive disabilities observed in this condition. The Ts65Dn (TS) mouse, the most commonly used model of DS, reflects many DS phenotypes, including alterations in cerebellar morphology. One of the genes that is overexpressed in both individuals with DS and TS mice is DYRK1A/Dyrk1A (dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1A), which has been implicated in the altered cerebellar structural and functional phenotypes observed in both populations. The aim of this study was to evaluate the effect of Dyrk1A on different alterations observed in the cerebellum of TS animals. TS mice were crossed with Dyrk1A +/- KO mice to obtain mice with a triplicate segment of Mmu16 that included Dyrk1A (TS +/+/+), mice with triplicate copies of the same genes that carried only two copies of Dyrk1A (TS +/+/-), euploid mice that expressed a normal dose of Dyrk1A (CO +/+) and CO animals with a single copy of Dyrk1A (CO +/-). Male mice were used for all experiments. The normalization of the Dyrk1A gene dosage did not rescue the reduced cerebellar volume. However, it increased the size of the granular and molecular layers, the densities of granular and Purkinje cells, and dendritic arborization. Furthermore, it improved the excitatory/inhibitory balance and walking pattern of TS +/+/- mice. These results support the hypothesis that Dyrk1A is involved in some of the structural and functional cerebellar phenotypes observed in the TS mouse model.


Subject(s)
Cerebellum/pathology , Down Syndrome/genetics , Down Syndrome/pathology , Protein Serine-Threonine Kinases/genetics , Protein-Tyrosine Kinases/genetics , Animals , Disease Models, Animal , Mice , Mice, Transgenic , Dyrk Kinases
14.
Mol Neurobiol ; 55(6): 4745-4762, 2018 Jun.
Article in English | MEDLINE | ID: mdl-28717969

ABSTRACT

Trisomy 21 or Down syndrome (DS) is the most common cause of intellectual disability of a genetic origin. The Ts65Dn (TS) mouse, which is the most commonly used and best-characterized mouse model of DS, displays many of the cognitive, neuromorphological, and biochemical anomalies that are found in the human condition. One of the mechanisms that have been proposed to be responsible for the cognitive deficits in this mouse model is impaired GABA-mediated inhibition. Because of the well-known modulatory role of GABAA α5 subunit-containing receptors in cognitive processes, these receptors are considered to be potential targets for improving the intellectual disability in DS. The chronic administration of GABAA α5-negative allosteric modulators has been shown to be procognitive without anxiogenic or proconvulsant side effects. In the present study, we use a genetic approach to evaluate the contribution of GABAA α5 subunit-containing receptors to the cognitive, electrophysiological, and neuromorphological deficits in TS mice. We show that reducing the expression of GABAA α5 receptors by deleting one or two copies of the Gabra5 gene in TS mice partially ameliorated the cognitive impairments, improved long-term potentiation, enhanced neural differentiation and maturation, and normalized the density of the GABAergic synapse markers. Reducing the gene dosage of Gabra5 in TS mice did not induce motor alterations and anxiety or affect the viability of the mice. Our results provide further evidence of the role of GABAA α5 receptor-mediated inhibition in cognitive impairment in the TS mouse model of DS.


Subject(s)
Cognition , Down Syndrome/pathology , Down Syndrome/physiopathology , Electrophysiological Phenomena , Hippocampus/pathology , Hippocampus/physiopathology , Receptors, GABA-A/metabolism , Animals , Cell Count , Cell Differentiation , Cell Proliferation , Crosses, Genetic , Disease Models, Animal , Female , Gene Dosage , Male , Mice, Knockout , Neurons/pathology , Receptors, GABA-A/genetics , Time Factors
15.
Behav Brain Res ; 334: 142-154, 2017 09 15.
Article in English | MEDLINE | ID: mdl-28743603

ABSTRACT

Melatonin administered during adulthood induces beneficial effects on cognition and neuroprotection in the Ts65Dn (TS) mouse model of Down syndrome. Here, we investigated the effects of pre- and post-natal melatonin treatment on behavioral and cognitive abnormalities and on several neuromorphological alterations (hypocellularity, neurogenesis impairment and increased oxidative stress) that appear during the early developmental stages in TS mice. Pregnant TS females were orally treated with melatonin or vehicle from the time of conception until the weaning of the offspring, and the pups continued to receive the treatment from weaning until the age of 5 months. Melatonin administered during the pre- and post-natal periods did not improve the cognitive impairment of TS mice as measured by the Morris Water maze or fear conditioning tests. Histological alterations, such as decreased proliferation (Ki67+ cells) and hippocampal hypocellularity (DAPI+ cells), which are typical in TS mice, were not prevented by melatonin. However, melatonin partially regulated brain oxidative stress by modulating the activity of the primary antioxidant enzymes (superoxide dismutase in the cortex and catalase in the cortex and hippocampus) and slightly decreasing the levels of lipid peroxidation in the hippocampus of TS mice. These results show the inability of melatonin to prevent cognitive impairment in TS mice when it is administered at pre- and post-natal stages. Additionally, our findings suggest that to induce pro-cognitive effects in TS mice during the early stages of development, in addition to attenuating oxidative stress, therapies should aim to improve other altered processes, such as hippocampal neurogenesis and/or hypocellularity.


Subject(s)
Brain/drug effects , Cognition/drug effects , Down Syndrome/drug therapy , Melatonin/administration & dosage , Neuroprotective Agents/administration & dosage , Oxidative Stress/drug effects , Animals , Animals, Newborn , Brain/metabolism , Brain/pathology , Catalase/metabolism , Cell Proliferation/drug effects , Cell Proliferation/physiology , Cognition/physiology , Conditioning, Psychological/drug effects , Conditioning, Psychological/physiology , Disease Models, Animal , Down Syndrome/metabolism , Down Syndrome/pathology , Fear/drug effects , Fear/physiology , Ki-67 Antigen/metabolism , Lipid Peroxidation/drug effects , Lipid Peroxidation/physiology , Maze Learning/drug effects , Maze Learning/physiology , Melatonin/blood , Motor Activity/drug effects , Motor Activity/physiology , Neuroprotective Agents/blood , Oxidative Stress/physiology , Random Allocation , Superoxide Dismutase/metabolism
16.
Curr Med Chem ; 24(35): 3851-3878, 2017 Nov 20.
Article in English | MEDLINE | ID: mdl-28721826

ABSTRACT

BACKGROUND: Melatonin is a molecule with numerous properties applicable to the treatment of neurological diseases. Among these properties are the following: potent scavenger of oxygen and nitrogen reactive species, anti-inflammatory features, immuno-enhancing nature, and modulation of circadian rhythmicity. Furthermore, low concentrations of melatonin are usually found in patients with neurological diseases and mental disorders. The positive results obtained in experimental models of diverse pathologies, including diseases of the nervous system (e.g., Alzheimer's disease, Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis, Huntington's disease, epilepsy, headaches, etc.) as well as mental and behavioural disordes (e.g., autism spectrum disorders, attention-deficit hyperactivity disorders, etc.), have served as a basis for the design of clinical trials to study melatonin's possible usefulness in human pathology, although the satisfactory results obtained from the laboratory "bench" are not always applicable to the patient's "bedside". OBJECTIVE: In this article, we review those papers describing the results of the administration of melatonin to humans for various therapeutic purposes in the field of neuropathology. CONCLUSION: Clinical trials with strong methodologies and appropriate doses of melatonin are necessary to support or reject the usefulness of melatonin in neurological diseases.


Subject(s)
Melatonin/therapeutic use , Mental Disorders/drug therapy , Nervous System Diseases/drug therapy , Animals , Clinical Trials as Topic , Humans , Melatonin/pharmacology , Oxidative Stress/drug effects , Receptors, Melatonin/agonists , Receptors, Melatonin/metabolism
17.
Neurobiol Dis ; 106: 76-88, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28647555

ABSTRACT

The intellectual disability that characterizes Down syndrome (DS) is primarily caused by prenatal changes in central nervous system growth and differentiation. However, in later life stages, the cognitive abilities of DS individuals progressively decline due to accelerated aging and the development of Alzheimer's disease (AD) neuropathology. The AD neuropathology in DS has been related to the overexpression of several genes encoded by Hsa21 including DYRK1A (dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1A), which encodes a protein kinase that performs crucial functions in the regulation of multiple signaling pathways that contribute to normal brain development and adult brain physiology. Studies performed in vitro and in vivo in animal models overexpressing this gene have demonstrated that the DYRK1A gene also plays a crucial role in several neurodegenerative processes found in DS. The Ts65Dn (TS) mouse bears a partial triplication of several Hsa21 orthologous genes, including Dyrk1A, and replicates many DS-like abnormalities, including age-dependent cognitive decline, cholinergic neuron degeneration, increased levels of APP and Aß, and tau hyperphosphorylation. To use a more direct approach to evaluate the role of the gene dosage of Dyrk1A on the neurodegenerative profile of this model, TS mice were crossed with Dyrk1A KO mice to obtain mice with a triplication of a segment of Mmu16 that includes this gene, mice that are trisomic for the same genes but only carry two copies of Dyrk1A, euploid mice with a normal Dyrk1A dosage, and CO animals with a single copy of Dyrk1A. Normalizing the gene dosage of Dyrk1A in the TS mouse rescued the density of senescent cells in the cingulate cortex, hippocampus and septum, prevented cholinergic neuron degeneration, and reduced App expression in the hippocampus, Aß load in the cortex and hippocampus, the expression of phosphorylated tau at the Ser202 residue in the hippocampus and cerebellum and the levels of total tau in the cortex, hippocampus and cerebellum. Thus, the present study provides further support for the role of the Dyrk1A gene in several AD-like phenotypes found in TS mice and indicates that this gene could be a therapeutic target to treat AD in DS.


Subject(s)
Alzheimer Disease/metabolism , Down Syndrome/metabolism , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Animals , Brain/metabolism , Brain/pathology , Cholinergic Neurons/metabolism , Cholinergic Neurons/pathology , Disease Models, Animal , Down Syndrome/genetics , Down Syndrome/pathology , Gene Dosage , Male , Mice, 129 Strain , Mice, Inbred C3H , Mice, Inbred C57BL , Mice, Transgenic , Nerve Degeneration/genetics , Nerve Degeneration/metabolism , Nerve Degeneration/pathology , Peptide Fragments/metabolism , Phenotype , Phosphorylation , Protein Serine-Threonine Kinases/genetics , Protein-Tyrosine Kinases/genetics , tau Proteins/metabolism , Dyrk Kinases
18.
Neurochem Res ; 41(11): 2904-2913, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27450081

ABSTRACT

Previous studies have demonstrated that melatonin administration improves spatial learning and memory and hippocampal long-term potentiation in the adult Ts65Dn (TS) mouse, a model of Down syndrome (DS). This functional benefit of melatonin was accompanied by protection from cholinergic neurodegeneration and the attenuation of several hippocampal neuromorphological alterations in TS mice. Because oxidative stress contributes to the progression of cognitive deficits and neurodegeneration in DS, this study evaluates the antioxidant effects of melatonin in the brains of TS mice. Melatonin was administered to TS and control mice from 6 to 12 months of age and its effects on the oxidative state and levels of cellular senescence were evaluated. Melatonin treatment induced antioxidant and antiaging effects in the hippocampus of adult TS mice. Although melatonin administration did not regulate the activities of the main antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, and glutathione S-transferase) in the cortex or hippocampus, melatonin decreased protein and lipid oxidative damage by reducing the thiobarbituric acid reactive substances (TBARS) and protein carbonyls (PC) levels in the TS hippocampus due to its ability to act as a free radical scavenger. Consistent with this reduction in oxidative stress, melatonin also decreased hippocampal senescence in TS animals by normalizing the density of senescence-associated ß-galactosidase positive cells in the hippocampus. These results showed that this treatment attenuated the oxidative damage and cellular senescence in the brain of TS mice and support the use of melatonin as a potential therapeutic agent for age-related cognitive deficits and neurodegeneration in adults with DS.


Subject(s)
Antioxidants/pharmacology , Down Syndrome/drug therapy , Hippocampus/drug effects , Melatonin/pharmacology , Oxidative Stress/drug effects , Thiobarbituric Acid Reactive Substances/metabolism , Animals , Cellular Senescence , Disease Models, Animal , Glutathione Peroxidase/metabolism , Glutathione Reductase/metabolism , Glutathione Transferase/metabolism , Hippocampus/metabolism , Long-Term Potentiation/drug effects , Melatonin/administration & dosage , Mice , Oxidation-Reduction/drug effects , Superoxide Dismutase/metabolism
19.
PLoS One ; 9(9): e106572, 2014.
Article in English | MEDLINE | ID: mdl-25188425

ABSTRACT

Down syndrome (DS) phenotypes result from the overexpression of several dosage-sensitive genes. The DYRK1A (dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1A) gene, which has been implicated in the behavioral and neuronal alterations that are characteristic of DS, plays a role in neuronal progenitor proliferation, neuronal differentiation and long-term potentiation (LTP) mechanisms that contribute to the cognitive deficits found in DS. The purpose of this study was to evaluate the effect of Dyrk1A overexpression on the behavioral and cognitive alterations in the Ts65Dn (TS) mouse model, which is the most commonly utilized mouse model of DS, as well as on several neuromorphological and electrophysiological properties proposed to underlie these deficits. In this study, we analyzed the phenotypic differences in the progeny obtained from crosses of TS females and heterozygous Dyrk1A (+/-) male mice. Our results revealed that normalization of the Dyrk1A copy number in TS mice improved working and reference memory based on the Morris water maze and contextual conditioning based on the fear conditioning test and rescued hippocampal LTP. Concomitant with these functional improvements, normalization of the Dyrk1A expression level in TS mice restored the proliferation and differentiation of hippocampal cells in the adult dentate gyrus (DG) and the density of GABAergic and glutamatergic synapse markers in the molecular layer of the hippocampus. However, normalization of the Dyrk1A gene dosage did not affect other structural (e.g., the density of mature hippocampal granule cells, the DG volume and the subgranular zone area) or behavioral (i.e., hyperactivity/attention) alterations found in the TS mouse. These results suggest that Dyrk1A overexpression is involved in some of the cognitive, electrophysiological and neuromorphological alterations, but not in the structural alterations found in DS, and suggest that pharmacological strategies targeting this gene may improve the treatment of DS-associated learning disabilities.


Subject(s)
Down Syndrome/metabolism , Down Syndrome/physiopathology , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/metabolism , Animals , Cognition/physiology , Disease Models, Animal , Down Syndrome/genetics , Female , Long-Term Potentiation/genetics , Long-Term Potentiation/physiology , Male , Memory/physiology , Mice , Mice, Transgenic , Protein Serine-Threonine Kinases/genetics , Protein-Tyrosine Kinases/genetics , Dyrk Kinases
20.
J Pineal Res ; 56(1): 51-61, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24147912

ABSTRACT

The Ts65Dn mouse (TS), the most commonly used model of Down syndrome (DS), exhibits several key phenotypic characteristics of this condition. In particular, these animals present hypocellularity in different areas of their CNS due to impaired neurogenesis and have alterations in synaptic plasticity that compromise their cognitive performance. In addition, increases in oxidative stress during adulthood contribute to the age-related progression of cognitive and neuronal deterioration. We have previously demonstrated that chronic melatonin treatment improves learning and memory and reduces cholinergic neurodegeneration in TS mice. However, the molecular and physiological mechanisms that mediate these beneficial cognitive effects are not yet fully understood. In this study, we analyzed the effects of chronic melatonin treatment on different mechanisms that have been proposed to underlie the cognitive impairments observed in TS mice: reduced neurogenesis, altered synaptic plasticity, enhanced synaptic inhibition and oxidative damage. Chronic melatonin treatment rescued both impaired adult neurogenesis and the decreased density of hippocampal granule cells in trisomic mice. In addition, melatonin administration reduced synaptic inhibition in TS mice by increasing the density and/or activity of glutamatergic synapses in the hippocampus. These effects were accompanied by a full recovery of hippocampal LTP in trisomic animals. Finally, melatonin treatment decreased the levels of lipid peroxidation in the hippocampus of TS mice. These results indicate that the cognitive-enhancing effects of melatonin in adult TS mice could be mediated by the normalization of their electrophysiological and neuromorphological abnormalities and suggest that melatonin represents an effective treatment in retarding the progression of DS neuropathology.


Subject(s)
Down Syndrome/drug therapy , Down Syndrome/physiopathology , Hippocampus , Melatonin/therapeutic use , Analysis of Variance , Animals , Disease Models, Animal , Female , Hippocampus/chemistry , Hippocampus/cytology , Hippocampus/drug effects , Indoles/chemistry , Ki-67 Antigen/analysis , Ki-67 Antigen/metabolism , Lipid Peroxidation/drug effects , Male , Melatonin/administration & dosage , Melatonin/pharmacology , Mice , Neuronal Plasticity/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL