Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
PLoS One ; 18(11): e0290459, 2023.
Article in English | MEDLINE | ID: mdl-37910492

ABSTRACT

Dinosaur foraging ecology has been the subject of scientific interest for decades, yet much of what we understand about it remains hypothetical. We wrote an agent-based model (ABM) to simulate meat energy sources present in dinosaur environments, including carcasses of giant sauropods, along with living, huntable prey. Theropod dinosaurs modeled in this environment (specifically allosauroids, and more particularly, Allosaurus Marsh, 1877) were instantiated with heritable traits favorable to either hunting success or scavenging success. If hunter phenotypes were more reproductively successful, their traits were propagated into the population through their offspring, resulting in predator specialists. If selective pressure favored scavenger phenotypes, the population would evolve to acquire most of their calories from carrion. Data generated from this model strongly suggest that theropods in sauropod-dominated systems evolved to detect carcasses, consume and store large quantities of fat, and dominate carcass sites. Broadly speaking, selective forces did not favor predatory adaptations, because sauropod carrion resource pools, as we modeled them, were too profitable for prey-based resource pools to be significant. This is the first research to test selective pressure patterns in dinosaurs, and the first to estimate theropod mass based on metabolic constraints.


Subject(s)
Dinosaurs , Ecology , Animals , Bone and Bones , Predatory Behavior , Fishes , Dinosaurs/anatomy & histology , Fossils
2.
Zootaxa ; 5357(4): 451-501, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-38220635

ABSTRACT

Although Costa Rica occupies a mere 0.03% of the Earths land area, it nevertheless has recorded within its borders approximately 5% of the global diversity of mammals, thus making it one of the worlds megadiverse countries. Over the past ten years, 22 species have been added to the countrys inventory, bringing the total number known as here documented to 271; Chiroptera account for ten of these, having grown to 124 from 114; rodents have increased by eight species, from 47 to 55, with the caveat that we include three invasive species of Muridae that have gone feral. In contrast, the number of orders has decreased by one, by Artiodactyla incorporating the former Cetacea. Notes are provided for all taxonomic novelties since the last update. Since the first taxonomic compendium of the mammals of Costa Rica in 1869, the number of known species has grown by approximately 1.22 species year-1 (R2 = 0.96). Since 1983 however, this growth rate has been 1.64 species year-1 (R2 = 0.98). Despite this strong growth, an asymptote in the number of known species has not been reached. Conservation remains a primary need: over 60% of the countrys mammal species show population trends that are decreasing (13%), unknown (37%), or not assessed (11%), based on IUCN criteria. These analyses suggest that much remains to be known regarding the number of mammal species living in Costa Rica, but also that much more remains to be done to safeguard Costa Ricas exceptional biodiversity heritage.


Subject(s)
Chiroptera , Mammals , Animals , Costa Rica , Biodiversity , Introduced Species
3.
Science ; 372(6542): 592-600, 2021 05 07.
Article in English | MEDLINE | ID: mdl-33958470

ABSTRACT

The mammalian sex chromosome system (XX female/XY male) is ancient and highly conserved. The sex chromosome karyotype of the creeping vole (Microtus oregoni) represents a long-standing anomaly, with an X chromosome that is unpaired in females (X0) and exclusively maternally transmitted. We produced a highly contiguous male genome assembly, together with short-read genomes and transcriptomes for both sexes. We show that M. oregoni has lost an independently segregating Y chromosome and that the male-specific sex chromosome is a second X chromosome that is largely homologous to the maternally transmitted X. Both maternally inherited and male-specific sex chromosomes carry fragments of the ancestral Y chromosome. Consequences of this recently transformed sex chromosome system include Y-like degeneration and gene amplification on the male-specific X, expression of ancestral Y-linked genes in females, and X inactivation of the male-specific chromosome in male somatic cells. The genome of M. oregoni elucidates the processes that shape the gene content and dosage of mammalian sex chromosomes and exemplifies a rare case of plasticity in an ancient sex chromosome system.


Subject(s)
Abnormal Karyotype , Arvicolinae/genetics , Sex Determination Processes/genetics , X Chromosome/genetics , Animals , Base Sequence , Female , Gene Amplification , Genes, sry , Haplotypes , Male , Maternal Inheritance , X Chromosome Inactivation , Y Chromosome/genetics
4.
Viruses ; 11(7)2019 07 11.
Article in English | MEDLINE | ID: mdl-31373319

ABSTRACT

Orthohantaviruses are tightly linked to the ecology and evolutionary history of their mammalian hosts. We hypothesized that in regions with dramatic climate shifts throughout the Quaternary, orthohantavirus diversity and evolution are shaped by dynamic host responses to environmental change through processes such as host isolation, host switching, and reassortment. Jemez Springs virus (JMSV), an orthohantavirus harbored by the dusky shrew (Sorex monticola) and five close relatives distributed widely in western North America, was used to test this hypothesis. Total RNAs, extracted from liver or lung tissue from 164 shrews collected from western North America during 1983-2007, were analyzed for orthohantavirus RNA by reverse transcription polymerase chain reaction (RT-PCR). Phylogenies inferred from the L-, M-, and S-segment sequences of 30 JMSV strains were compared with host mitochondrial cytochrome b. Viral clades largely corresponded to host clades, which were primarily structured by geography and were consistent with hypothesized post-glacial expansion. Despite an overall congruence between host and viral gene phylogenies at deeper scales, phylogenetic signals were recovered that also suggested a complex pattern of host switching and at least one reassortment event in the evolutionary history of JMSV. A fundamental understanding of how orthohantaviruses respond to periods of host population expansion, contraction, and secondary host contact is the key to establishing a framework for both more comprehensive understanding of orthohantavirus evolutionary dynamics and broader insights into host-pathogen systems.


Subject(s)
Evolution, Molecular , Hantavirus Infections/veterinary , Host Microbial Interactions , Orthohantavirus/classification , Shrews/virology , Animals , Host Specificity , North America , Phylogeny , Phylogeography , Reassortant Viruses
5.
Thomson, Scott A; Pyle, Richard L; Ahyong, Shane T; Alonso-Zarazaga, Miguel; Ammirati, Joe; Araya, Juan Francisco; Ascher, John S; Audisio, Tracy Lynn; Azevedo-Santos, Valter M; Bailly, Nicolas; Baker, William J; Balke, Michael; Barclay, Maxwell V. L; Barrett, Russell L; Benine, Ricardo C; Bickerstaff, James R. M; Bouchard, Patrice; Bour, Roger; Bourgoin, Thierry; Boyko, Christopher B; Breure, Abraham S. H; Brothers, Denis J; Byng, James W; Campbell, David; Ceriaco, Luis M. P; Cernak, Istvan; Cerretti, Pierfilippo; Chang, Chih-Han; Cho, Soowon; Copus, Joshua M; Costello, Mark J; Cseh, Andras; Csuzdi, Csaba; Culham, Alastair; D'Elia, Guillermo; d'Acoz, Cedric d'Udekem; Daneliya, Mikhail E; Dekker, Rene; Dickinson, Edward C; Dickinson, Timothy A; van Dijk, Peter Paul; Dijkstra, Klaas-Douwe B; Dima, Balint; Dmitriev, Dmitry A; Duistermaat, Leni; Dumbacher, John P; Eiserhardt, Wolf L; Ekrem, Torbjorn; Evenhuis, Neal L; Faille, Arnaud; Fernandez-Trianam, Jose L; Fiesler, Emile; Fishbein, Mark; Fordham, Barry G; Freitas, Andre V. L; Friol, Natalia R; Fritz, Uwe; Froslev, Tobias; Funk, Vicki A; Gaimari, Stephen D; Garbino, Guilherme S. T; Garraffoni, Andre R. S; Geml, Jozsef; Gill, Anthony C; Gray, Alan; Grazziotin, Felipe Gobbi; Greenslade, Penelope; Gutierrez, Eliecer E; Harvey, Mark S; Hazevoet, Cornelis J; He, Kai; He, Xiaolan; Helfer, Stephan; Helgen, Kristofer M; van Heteren, Anneke H; Garcia, Francisco Hita; Holstein, Norbert; Horvath, Margit K; Hovenkamp, Peter H; Hwang, Wei Song; Hyvonen, Jaakko; Islam, Melissa B; Iverson, John B; Ivie, Michael A; Jaafar, Zeehan; Jackson, Morgan D; Jayat, J. Pablo; Johnson, Norman F; Kaiser, Hinrich; Klitgard, Bente B; Knapp, Daniel G; Kojima, Jun-ichi; Koljalg, Urmas; Kontschan, Jeno; Krell, Frank-Thorsten; Krisai-Greilhuberm, Irmgard; Kullander, Sven; Latelle, Leonardo; Lattke, John E; Lencioni, Valeria; Lewis, Gwilym P; Lhano, Marcos G; Lujan, Nathan K; Luksenburg, Jolanda A; Mariaux, Jean; Marinho-Filho, Jader; Marshall, Christopher J; Mate, Jason F; McDonough, Molly M; Michel, Ellinor; Miranda, Vitor F. O; Mitroiulm, Mircea-Dan; Molinari, Jesus; Monks, Scott; Moore, Abigail J; Moratelli, Ricardo; Muranyi, David; Nakano, Takafumi; Nikolaeva, Svetlana; Noyes, John; Ohl, Michael; Oleas, Nora H; Orrell, Thomas; Pall-Gergele, Barna; Pape, Thomas; Papp, Viktor; Parenti, Lynne R; Patterson, David; Pavlinov, Igor Ya; Pine, Ronald H; Poczai, Peter; Prado, Jefferson; Prathapan, Divakaran; Rabeler, Richard K; Randall, John E; Rheindt, Frank E; Rhodin, Anders G. J; Rodriguez, Sara M; Rogers, D. Christopher; Roque, Fabio de O; Rowe, Kevin C; Ruedas, Luis A; Salazar-Bravo, Jorge; Salvador, Rodrigo B; Sangster, George; Sarmiento, Carlos E; Schigel, Dmitry S; Schmidt, Stefan; Schueler, Frederick W; Segers, Hendrik; Snow, Neil; Souza-Dias, Pedro G. B; Stals, Riaan; Stenroos, Soili; Stone, R. Douglas; Sturm, Charles F; Stys, Pavel; Teta, Pablo; Thomas, Daniel C; Timm, Robert M; Tindall, Brian J; Todd, Jonathan A; Triebel, Dagmar; Valdecasas, Antonio G; Vizzini, Alfredo; Vorontsova, Maria S; de Vos, Jurriaan M; Wagner, Philipp; Watling, Les; Weakley, Alan; Welter-Schultes, Francisco; Whitmore, Daniel; Wilding, Nicholas; Will, Kipling; Williams, Jason; Wilson, Karen; Winston, Judith E; Wuster, Wolfgang; Yanega, Douglas; Yeates, David K; Zaher, Hussam; Zhang, Guanyang; Zhang, Zhi-Qiang; Zhou, Hong-Zhang.
PLoS. Biol. ; 16(3): e2005075, 2018.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15045
6.
Ecol Evol ; 5(24): 5823-37, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26811757

ABSTRACT

Host shifts of phytophagous insect specialists to novel plants can result in divergent ecological adaptation, generating reproductive isolation and potentially new species. Rhagoletis pomonella fruit flies in eastern North America underwent a host shift ~160 ya from native downy hawthorn (Crataegus mollis) to introduced, domesticated apple (Malus domestica). Divergent selection on diapause phenology related to the earlier fruiting time of apples versus downy hawthorns resulted in partial allochronic reproductive isolation between the fly races. Here, we test for how rapid and repeatable shifts in life-history timing are driving ecological divergence of R. pomonella in the Pacific Northwestern USA. The fly was introduced into the region via larval-infested apples 40-65 ya and now attacks native black hawthorn (Crataegus douglasii) and introduced ornamental hawthorn (Crataegus monogyna), in addition to early- and late-maturing apple varieties in the region. To investigate the life-history timing hypothesis, we used a field-based experiment to characterize the host-associated eclosion and flight activity patterns of adults, and the feeding times of larvae at a field site in Vancouver, Washington. We also assessed the degree to which differences in host-fruiting time generate allochronic isolation among apple-, black hawthorn-, and ornamental hawthorn-associated fly populations. We conclude that host-associated fly populations are temporally offset 24.4% to 92.6% in their seasonal distributions. Our results imply that R. pomonella possesses the capacity for rapid and repeatable shifts in diapause life history to match host-fruiting phenology, which can generate ecologically based reproductive isolation, and potentially biodiversity in the process.

7.
J Wildl Dis ; 46(2): 433-41, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20688636

ABSTRACT

Sin Nombre virus (SNV), one of at least 45 hantaviruses described worldwide, is hosted by the deer mouse, Peromyscus maniculatus, a common species throughout most of North America. Herein, we describe general life-history characteristics of deer mice and the ways in which these factors relate to the incidence of SNV infections among populations of this host species in and around Portland, Oregon. In total, 3,175 deer mice were captured from October 2002 to September 2005. Transmission of SNV appears to be associated with male breeding behaviors, as more males and adults were infected than expected by capture rate; spring and summer had the highest infection prevalence, as well as scrotal male captures. Wounding rates between infected and uninfected deer mice were not different in any age or sex class. Capture rates were significantly and positively related to the interaction of temperature departure from normal, total precipitation, and number of clear days from two seasons previous (P=0.029), while infection prevalence was significantly and negatively related to the capture rate of juveniles from two seasons previous (P=0.029).


Subject(s)
Hantavirus Pulmonary Syndrome/veterinary , Peromyscus/virology , Rodent Diseases/epidemiology , Sin Nombre virus , Animals , Animals, Wild/virology , Breeding , Disease Reservoirs/veterinary , Disease Reservoirs/virology , Female , Hantavirus Pulmonary Syndrome/epidemiology , Hantavirus Pulmonary Syndrome/transmission , Male , Oregon/epidemiology , Rodent Diseases/transmission , Seasons , Sex Factors , Weather
8.
Emerg Infect Dis ; 15(7): 1012-8, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19624913

ABSTRACT

Emerging outbreaks of zoonotic diseases are affecting humans at an alarming rate. Until the ecological factors associated with zoonoses are better understood, disease emergence will continue. For Lyme disease, disease suppression has been demonstrated by a dilution effect, whereby increasing species diversity decreases disease prevalence in host populations. To test the dilution effect in another disease, we examined 17 ecological variables associated with prevalence of the directly transmitted Sin Nombre virus (genus Hantavirus, etiologic agent of hantavirus pulmonary syndrome) in its wildlife host, the deer mouse (Peromyscus maniculatus). Only species diversity was statistically linked to infection prevalence: as species diversity decreased, infection prevalence increased. The increase was moderate, but prevalence increased exponentially at low levels of diversity, a phenomenon described as zoonotic release. The results suggest that species diversity affects disease emergence.


Subject(s)
Hantavirus Pulmonary Syndrome/epidemiology , Sin Nombre virus/genetics , Animals , Genetic Variation , Humans , Mammals/virology , Oregon/epidemiology , Peromyscus/virology , Prevalence , Regression Analysis , Species Specificity , Zoonoses/epidemiology , Zoonoses/transmission
9.
Virology ; 388(1): 8-14, 2009 May 25.
Article in English | MEDLINE | ID: mdl-19394994

ABSTRACT

A genetically distinct hantavirus, designated Oxbow virus (OXBV), was detected in tissues of an American shrew mole (Neurotrichus gibbsii), captured in Gresham, Oregon, in September 2003. Pairwise analysis of full-length S- and M- and partial L-segment nucleotide and amino acid sequences of OXBV indicated low sequence similarity with rodent-borne hantaviruses. Phylogenetic analyses using maximum-likelihood and Bayesian methods, and host-parasite evolutionary comparisons, showed that OXBV and Asama virus, a hantavirus recently identified from the Japanese shrew mole (Urotrichus talpoides), were related to soricine shrew-borne hantaviruses from North America and Eurasia, respectively, suggesting parallel evolution associated with cross-species transmission.


Subject(s)
Biological Evolution , Moles/virology , Orthohantavirus/genetics , Orthohantavirus/physiology , Animals , Host-Pathogen Interactions , Oregon , Phylogeny , RNA, Viral/genetics , RNA, Viral/isolation & purification
12.
Emerg Infect Dis ; 10(9): 1635-42, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15498167

ABSTRACT

An outbreak of hantavirus pulmonary syndrome occurred in the province of Los Santos, Panama, in late 1999 and early 2000. Eleven cases were identified; 9 were confirmed by serology. Three cases were fatal; however, no confirmed case-patient died. Case-neighborhood serologic surveys resulted in an overall hantavirus antibody prevalence of 13% among household and neighborhood members from the outbreak foci. Epidemiologic investigations did not suggest person-to-person transmission of hantavirus infection. By use of Sin Nombre virus antigen, hantavirus antibodies were detected in Oligoryzomys fulvescens and Zygodontomys brevicauda cherriei. This outbreak resulted in the first documented cases of human hantavirus infections in Central America.


Subject(s)
Hantavirus Pulmonary Syndrome/epidemiology , Adolescent , Adult , Aged , Animals , Antibodies, Viral/blood , Child , Child, Preschool , Disease Outbreaks , Disease Reservoirs , Female , Orthohantavirus/immunology , Hantavirus Pulmonary Syndrome/diagnosis , Health Surveys , Humans , Infant , Male , Middle Aged , Panama/epidemiology , Population Surveillance , Rodentia/virology
13.
J Vector Ecol ; 29(1): 177-91, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15266755

ABSTRACT

In late 1999 and early 2000, an outbreak of hantavirus pulmonary syndrome (HPS) occurred in and around Los Santos, on the Azuero Peninsula of southwestern Panamá. This HPS episode, resulting in 22% case fatality, was linked to the Costa Rican pigmy rice rat, Oligoryzomys fulvescens costaricensis, which harbored a then undescribed hantavirus, Choclo virus. In addition, Cherrie's cane rat, Zygodontomys brevicauda cherriei, was identified as carrying a distinct hantavirus, Calabazo virus with no known pathogenicity to humans. Herein we present the ecological results of the outbreak investigations in the Azuero region. A total of 164 animals were captured, of which 126 were potential small, non-volant mammal hosts of a hantavirus: rodents in the family Muridae. There were significant differences in small mammal community structure between case sites and a negative control site. Differences were manifest in ecological measures of species diversity and in species evenness and heterogeneity measures, as indicated by Pairwise Euclidian distances and Morisita indices of community similarity. Our analyses suggest that human activities (i.e., deforestation for cattle ranching) coupled with environmental factors (i.e., increased precipitation) may have synergistically coalesced for an increased risk of HPS to area residents.


Subject(s)
Disease Outbreaks , Hantavirus Pulmonary Syndrome/epidemiology , Hantavirus Pulmonary Syndrome/transmission , Muridae , Orthohantavirus/pathogenicity , Animal Husbandry , Animals , Ecology , Environment , Female , Forestry , Humans , Male , Panama/epidemiology , Population Dynamics , Risk Factors
14.
J Wildl Dis ; 40(1): 103-9, 2004 Jan.
Article in English | MEDLINE | ID: mdl-15137495

ABSTRACT

Five hundred fifty-six samples representing 24 species of small mammals (two species of marsupials and 22 rodents) were collected in Panama between February 2000 and July 2002. The samples were examined for antibodies to hantaviruses by means of enzyme-linked immunosorbent assay or immunoblot assays. The serologic results indicated that several rodent species might act as hantaviral reservoirs in Panama: Costa Rican pygmy rice rat (Oligoryzomys fulvescens costaricensis), four positive of 72 tested (5.6%); Cherrie's cane rat (Zygodontomys brevicauda cherriei), five of 108 (4.6%); Mexican deer mouse (Peromyscus mexicanus), one of 22 (5%); Mexican harvest mouse (Reithrodontomys mexicanus), one of seven (14%); Chiriquí harvest mouse (Reithrodontomys creper), one of two (50%); and Sumichrast's harvest mouse (Reithrodontomys sumichrasti), three of four (75%). Hantavirus infection in Peromyscus mexicanus and the three species of Reithrodontomys was caused by Rio Segundo hantavirus, a species of virus not previously reported from Panama. At least three hantaviruses, therefore, are known to infect populations of wild rodents in the country. However, given the total number of animals tested, the role of these rodent species in the epidemiology and epizootiology of hantavirus infections remains unclear.


Subject(s)
Antibodies, Viral/blood , Hantavirus Infections/veterinary , Orthohantavirus/immunology , Rodent Diseases/epidemiology , Animals , Animals, Wild , Enzyme-Linked Immunosorbent Assay/veterinary , Female , Orthohantavirus/isolation & purification , Hantavirus Infections/epidemiology , Immunoblotting/veterinary , Male , Panama/epidemiology , Polymerase Chain Reaction/veterinary , Rodentia , Seroepidemiologic Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...