Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Nat Chem Biol ; 12(11): 908-910, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27669419

ABSTRACT

We describe a two-dimensional thermal proteome profiling strategy that can be combined with an orthogonal chemoproteomics approach to enable comprehensive target profiling of the marketed histone deacetylase inhibitor panobinostat. The N-hydroxycinnamide moiety is identified as critical for potent and tetrahydrobiopterin-competitive inhibition of phenylalanine hydroxylase leading to increases in phenylalanine and decreases in tyrosine levels. These findings provide a rationale for adverse clinical observations and suggest repurposing of the drug for treatment of tyrosinemia.


Subject(s)
Histone Deacetylase Inhibitors/pharmacology , Hydroxamic Acids/pharmacology , Indoles/pharmacology , Phenylalanine Hydroxylase/antagonists & inhibitors , Temperature , Dose-Response Relationship, Drug , Hep G2 Cells , Histone Deacetylase Inhibitors/chemistry , Humans , Hydroxamic Acids/chemistry , Indoles/chemistry , Molecular Structure , Panobinostat , Phenylalanine Hydroxylase/chemistry , Phenylalanine Hydroxylase/metabolism , Structure-Activity Relationship
2.
ACS Chem Biol ; 11(7): 2002-10, 2016 07 15.
Article in English | MEDLINE | ID: mdl-27197014

ABSTRACT

The 2-oxoglutarate-dependent dioxygenase target class comprises around 60 enzymes including several subfamilies with relevance to human disease, such as the prolyl hydroxylases and the Jumonji-type lysine demethylases. Current drug discovery approaches are largely based on small molecule inhibitors targeting the iron/2-oxoglutarate cofactor binding site. We have devised a chemoproteomics approach based on a combination of unselective active-site ligands tethered to beads, enabling affinity capturing of around 40 different dioxygenase enzymes from human cells. Mass-spectrometry-based quantification of bead-bound enzymes using a free-ligand competition-binding format enabled the comprehensive determination of affinities for the cosubstrate 2-oxoglutarate and for oncometabolites such as 2-hydroxyglutarate. We also profiled a set of representative drug-like inhibitor compounds. The results indicate that intracellular competition by endogenous cofactors and high active site similarity present substantial challenges for drug discovery for this target class.


Subject(s)
Dioxygenases/metabolism , Ketoglutaric Acids/metabolism , Proteomics
3.
J Med Chem ; 59(4): 1357-69, 2016 Feb 25.
Article in English | MEDLINE | ID: mdl-26771107

ABSTRACT

Optimization of KDM6B (JMJD3) HTS hit 12 led to the identification of 3-((furan-2-ylmethyl)amino)pyridine-4-carboxylic acid 34 and 3-(((3-methylthiophen-2-yl)methyl)amino)pyridine-4-carboxylic acid 39 that are inhibitors of the KDM4 (JMJD2) family of histone lysine demethylases. Compounds 34 and 39 possess activity, IC50 ≤ 100 nM, in KDM4 family biochemical (RFMS) assays with ≥ 50-fold selectivity against KDM6B and activity in a mechanistic KDM4C cell imaging assay (IC50 = 6-8 µM). Compounds 34 and 39 are also potent inhibitors of KDM5C (JARID1C) (RFMS IC50 = 100-125 nM).


Subject(s)
Enzyme Inhibitors/chemistry , Histone Demethylases/antagonists & inhibitors , Jumonji Domain-Containing Histone Demethylases/antagonists & inhibitors , Pyridines/chemistry , Amination , Cell Line , Cell Membrane Permeability , Crystallography, X-Ray , Drug Design , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/pharmacology , Histone Demethylases/chemistry , Histone Demethylases/metabolism , Humans , Jumonji Domain-Containing Histone Demethylases/chemistry , Jumonji Domain-Containing Histone Demethylases/metabolism , Models, Molecular , Pyridines/pharmacokinetics , Pyridines/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL