Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ther Adv Musculoskelet Dis ; 15: 1759720X231192315, 2023.
Article in English | MEDLINE | ID: mdl-37694182

ABSTRACT

Achieving a good outcome for a person with Psoriatic Arthritis (PsA) is made difficult by late diagnosis, heterogenous clinical disease expression and in many cases, failure to adequately suppress inflammatory disease features. Single-centre studies have certainly contributed to our understanding of disease pathogenesis, but to adequately address the major areas of unmet need, multi-partner, collaborative research programmes are now required. HIPPOCRATES is a 5-year, Innovative Medicines Initiative (IMI) programme which includes 17 European academic centres experienced in PsA research, 5 pharmaceutical industry partners, 3 small-/medium-sized industry partners and 2 patient-representative organizations. In this review, the ambitious programme of work to be undertaken by HIPPOCRATES is outlined and common approaches and challenges are identified. It is expected that, when completed, the results will ultimately allow for changes in the approaches to diagnosing, managing and treating PsA allowing for better short-term and long-term outcomes.


Improving outcomes in Psoriatic Arthritis Psoriatic Arthritis (PsA) is a form of arthritis which is found in approximately 30% of people who have the skin condition, Psoriasis. Frequently debilitating and progressive, achieving a good outcome for a person with PsA is made difficult by late diagnosis, disease clinical features and in many cases, failure to adequately control features of inflammation. Research studies from individual centres have certainly contributed to our understanding of why people develop PsA but to adequately address the major areas of unmet need, multi-centre, collaborative research programmes are now required. HIPPOCRATES is a 5-year, Innovative Medicines Initiative (IMI) programme which includes 17 European academic centres experienced in PsA research, 5 pharmaceutical industry partners, 3 small-/medium-sized industry partners and 2 patient representative organisations (see appendix). In this review, the ambitious programme of work to be undertaken by HIPPOCRATES is outlined and common approaches and challenges are identified. The participation of patient research partners in all stages of the work of HIPPOCRATES is highlighted. It is expected that, when completed, the results will ultimately allow for changes in the approaches to diagnosing, managing and treating PsA allowing for improvements in short-term and long-term outcomes.

2.
IEEE J Biomed Health Inform ; 18(3): 840-54, 2014 May.
Article in English | MEDLINE | ID: mdl-24108720

ABSTRACT

This paper outlines the major components and function of the technologically integrated oncosimulator developed primarily within the Advancing Clinico Genomic Trials on Cancer (ACGT) project. The Oncosimulator is defined as an information technology system simulating in vivo tumor response to therapeutic modalities within the clinical trial context. Chemotherapy in the neoadjuvant setting, according to two real clinical trials concerning nephroblastoma and breast cancer, has been considered. The spatiotemporal simulation module embedded in the Oncosimulator is based on the multiscale, predominantly top-down, discrete entity-discrete event cancer simulation technique developed by the In Silico Oncology Group, National Technical University of Athens. The technology modules include multiscale data handling, image processing, invocation of code execution via a spreadsheet-inspired environment portal, execution of the code on the grid, and the visualization of the predictions. A refining scenario for the eventual coupling of the oncosimulator with immunological models is also presented. Parameter values have been adapted to multiscale clinical trial data in a consistent way, thus supporting the predictive potential of the oncosimulator. Indicative results demonstrating various aspects of the clinical adaptation and validation process are presented. Completion of these processes is expected to pave the way for the clinical translation of the system.


Subject(s)
Computer Simulation , Genomics/methods , Models, Biological , Neoplasms , Antineoplastic Agents/therapeutic use , Cell Death , Humans , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/metabolism , Neoplastic Stem Cells , User-Computer Interface
SELECTION OF CITATIONS
SEARCH DETAIL