Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Nucleic Acids Res ; 52(2): 572-582, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38084892

ABSTRACT

Single same cell RNAseq/ATACseq multiome data provide unparalleled potential to develop high resolution maps of the cell-type specific transcriptional regulatory circuitry underlying gene expression. We present CREMA, a framework that recovers the full cis-regulatory circuitry by modeling gene expression and chromatin activity in individual cells without peak-calling or cell type labeling constraints. We demonstrate that CREMA overcomes the limitations of existing methods that fail to identify about half of functional regulatory elements which are outside the called chromatin 'peaks'. These circuit sites outside called peaks are shown to be important cell type specific functional regulatory loci, sufficient to distinguish individual cell types. Analysis of mouse pituitary data identifies a Gata2-circuit for the gonadotrope-enriched disease-associated Pcsk1 gene, which is experimentally validated by reduced gonadotrope expression in a gonadotrope conditional Gata2-knockout model. We present a web accessible human immune cell regulatory circuit resource, and provide CREMA as an R package.


Subject(s)
Gonadotrophs , Pituitary Gland , Mice , Humans , Animals , Pituitary Gland/metabolism , Gonadotrophs/metabolism , Chromatin/genetics , Chromatin/metabolism , Regulatory Sequences, Nucleic Acid
2.
bioRxiv ; 2023 Nov 04.
Article in English | MEDLINE | ID: mdl-37961197

ABSTRACT

To facilitate single cell multi-omics analysis and improve reproducibility, we present SPEEDI (Single-cell Pipeline for End to End Data Integration), a fully automated end-to-end framework for batch inference, data integration, and cell type labeling. SPEEDI introduces data-driven batch inference and transforms the often heterogeneous data matrices obtained from different samples into a uniformly annotated and integrated dataset. Without requiring user input, it automatically selects parameters and executes pre-processing, sample integration, and cell type mapping. It can also perform downstream analyses of differential signals between treatment conditions and gene functional modules. SPEEDI's data-driven batch inference method works with widely used integration and cell-typing tools. By developing data-driven batch inference, providing full end-to-end automation, and eliminating parameter selection, SPEEDI improves reproducibility and lowers the barrier to obtaining biological insight from these valuable single-cell datasets. The SPEEDI interactive web application can be accessed at https://speedi.princeton.edu/.

3.
bioRxiv ; 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37808658

ABSTRACT

Endurance exercise is an important health modifier. We studied cell-type specific adaptations of human skeletal muscle to acute endurance exercise using single-nucleus (sn) multiome sequencing in human vastus lateralis samples collected before and 3.5 hours after 40 min exercise at 70% VO2max in four subjects, as well as in matched time of day samples from two supine resting circadian controls. High quality same-cell RNA-seq and ATAC-seq data were obtained from 37,154 nuclei comprising 14 cell types. Among muscle fiber types, both shared and fiber-type specific regulatory programs were identified. Single-cell circuit analysis identified distinct adaptations in fast, slow and intermediate fibers as well as LUM-expressing FAP cells, involving a total of 328 transcription factors (TFs) acting at altered accessibility sites regulating 2,025 genes. These data and circuit mapping provide single-cell insight into the processes underlying tissue and metabolic remodeling responses to exercise.

4.
Endocrinology ; 164(5)2023 03 13.
Article in English | MEDLINE | ID: mdl-36951304

ABSTRACT

Follicle-stimulating hormone (FSH), a dimeric glycoprotein produced by pituitary gonadotrope cells, regulates spermatogenesis in males and ovarian follicle growth in females. Hypothalamic gonadotropin-releasing hormone (GnRH) stimulates FSHß subunit gene (Fshb) transcription, though the underlying mechanisms are poorly understood. To address this gap in knowledge, we examined changes in pituitary gene expression in GnRH-deficient mice (hpg) treated with a regimen of exogenous GnRH that increases pituitary Fshb but not luteinizing hormone ß (Lhb) messenger RNA levels. Activating transcription factor 3 (Atf3) was among the most upregulated genes. Activating transcription factor 3 (ATF3) can heterodimerize with members of the activator protein 1 family to regulate gene transcription. Co-expression of ATF3 with JunB stimulated murine Fshb, but not Lhb, promoter-reporter activity in homologous LßT2b cells. ATF3 also synergized with a constitutively active activin type I receptor to increase endogenous Fshb expression in these cells. Nevertheless, FSH production was intact in gonadotrope-specific Atf3 knockout [conditional knockout (cKO)] mice. Ovarian follicle development, ovulation, and litter sizes were equivalent between cKOs and controls. Testis weights and sperm counts did not differ between genotypes. Following gonadectomy, increases in LH secretion were enhanced in cKO animals. Though FSH levels did not differ between genotypes, post-gonadectomy increases in pituitary Fshb and gonadotropin α subunit expression were more pronounced in cKO than control mice. These data indicate that ATF3 can selectively stimulate Fshb expression in vitro but is not required for FSH production in vivo.


Subject(s)
Activating Transcription Factor 3 , Follicle Stimulating Hormone , Female , Mice , Male , Animals , Follicle Stimulating Hormone/metabolism , Activating Transcription Factor 3/genetics , Activating Transcription Factor 3/metabolism , Gene Expression Regulation , Semen/metabolism , Gonadotropins , Gonadotropin-Releasing Hormone/metabolism , Follicle Stimulating Hormone, beta Subunit/genetics
5.
iScience ; 26(1): 105775, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36594034

ABSTRACT

Fibrosis is a prominent pathological feature of skeletal muscle in Duchenne muscular dystrophy (DMD). The commonly used disease mouse model, mdx 5cv , displays progressive fibrosis in the diaphragm but not limb muscles. We use single-cell RNA sequencing to determine the cellular expression of the genes involved in extracellular matrix (ECM) production and degradation in the mdx 5cv diaphragm and quadriceps. We find that fibro/adipogenic progenitors (FAPs) are not only the primary source of ECM but also the predominant cells that express important ECM regulatory genes, including Ccn2, Ltbp4, Mmp2, Mmp14, Timp1, Timp2, and Loxs. The effector and regulatory functions are exerted by diverse FAP clusters which are different between diaphragm and quadriceps, indicating their activation by different tissue microenvironments. FAPs are more abundant in diaphragm than in quadriceps. Our findings suggest that the development of anti-fibrotic therapy for DMD should target not only the ECM production but also the pro-fibrogenic regulatory functions of FAPs.

6.
Endocrinology ; 163(11)2022 10 11.
Article in English | MEDLINE | ID: mdl-35957608

ABSTRACT

The inhibins control reproduction by suppressing follicle-stimulating hormone synthesis in pituitary gonadotrope cells. The newly discovered inhibin B coreceptor, TGFBR3L, is selectively and highly expressed in gonadotropes in both mice and humans. Here, we describe our initial characterization of mechanisms controlling cell-specific Tgfbr3l/TGFBR3L transcription. We identified two steroidogenic factor 1 (SF-1 or NR5A1) cis-elements in the proximal Tgfbr3l promoter in mice. SF-1 induction of murine Tgfbr3l promoter-reporter activity was inhibited by mutations in one or both sites in heterologous cells. In homologous cells, mutation of these cis-elements or depletion of endogenous SF-1 similarly decreased reporter activity. We observed nearly identical results when using a human TGFBR3L promoter-reporter. The Tgfbr3l gene was tightly compacted and Tgfbr3l mRNA expression was essentially absent in gonadotropes of SF-1 (Nr5a1) conditional knockout mice. During murine embryonic development, Tgfbr3l precedes Nr5a1 expression, though the two transcripts are fully colocalized by embryonic day 18.5 and thereafter. Collectively, these data indicate that SF-1 directly regulates Tgfbr3l/TGFBR3L transcription and is required for postnatal expression of the gene in gonadotropes.


Subject(s)
Gene Expression Regulation , Receptors, Transforming Growth Factor beta , Steroidogenic Factor 1 , Animals , Female , Follicle Stimulating Hormone/metabolism , Homeodomain Proteins/metabolism , Inhibins/genetics , Inhibins/metabolism , Mice , Pregnancy , RNA, Messenger , Receptors, Transforming Growth Factor beta/genetics , Steroidogenic Factor 1/genetics , Steroidogenic Factor 1/metabolism
7.
STAR Protoc ; 3(2): 101446, 2022 06 17.
Article in English | MEDLINE | ID: mdl-35693209

ABSTRACT

Concomitant profiling of transcriptome and chromatin accessibility in isolated nuclei can reveal gene regulatory control mechanisms in health and disease. We report a single nucleus multi-omics analysis protocol optimized for frozen archived postmortem human pituitaries that is also effective for frozen ovine and murine pituitaries and human skeletal muscle biopsies. Its main advantages are that (1) it is not limited to fresh tissue, (2) it avoids tissue dissociation-induced transcriptional changes, and (3) it includes a novel, automated quality control pipeline. For complete details on the use and execution of this protocol, please refer to Ruf-Zamojski et al. (2021) and Zhang et al. (2022).


Subject(s)
Chromatin , Transcriptome , Animals , Cell Nucleus , Freezing , Humans , Mice , Sheep/genetics , Solitary Nucleus
8.
J Biol Chem ; 298(7): 102072, 2022 07.
Article in English | MEDLINE | ID: mdl-35643321

ABSTRACT

Mammalian reproduction depends on the gonadotropins, follicle-stimulating hormone (FSH), and luteinizing hormone, which are secreted by pituitary gonadotrope cells. The zinc-finger transcription factor GATA2 was previously implicated in FSH production in male mice; however, its mechanisms of action and role in females were not determined. To directly address GATA2 function in gonadotropes, we generated and analyzed gonadotrope-specific Gata2 KO mice using the Cre-lox system. We found that while conditional KO (cKO) males exhibited ∼50% reductions in serum FSH levels and pituitary FSHß subunit (Fshb) expression relative to controls, FSH production was apparently normal in cKO females. In addition, RNA-seq analysis of purified gonadotropes from control and cKO males revealed a profound decrease in expression of gremlin (Grem1), a bone morphogenetic protein (BMP) antagonist. We show Grem1 was expressed in gonadotropes, but not other cell lineages, in the adult male mouse pituitary. Furthermore, Gata2, Grem1, and Fshb mRNA levels were significantly higher in the pituitaries of WT males relative to females but decreased in males treated with estradiol and increased following ovariectomy in control but not cKO females. Finally, we found that recombinant gremlin stimulated Fshb expression in pituitary cultures from WT mice. Collectively, the data suggest that GATA2 promotes Grem1 expression in gonadotropes and that the gremlin protein potentiates FSH production. The mechanisms of gremlin action have not yet been established but may involve attenuation of BMP binding to activin type II receptors in gonadotropes, facilitating induction of Fshb transcription by activins or related ligands.


Subject(s)
Bone Morphogenetic Proteins , Follicle Stimulating Hormone , GATA2 Transcription Factor , Gonadotrophs , Intercellular Signaling Peptides and Proteins , Activins/metabolism , Animals , Bone Morphogenetic Proteins/antagonists & inhibitors , Female , Follicle Stimulating Hormone/blood , Follicle Stimulating Hormone, beta Subunit/blood , GATA2 Transcription Factor/genetics , Gonadotrophs/metabolism , Intercellular Signaling Peptides and Proteins/genetics , Male , Mice
9.
Cell Rep ; 38(10): 110467, 2022 03 08.
Article in English | MEDLINE | ID: mdl-35263594

ABSTRACT

Despite their importance in tissue homeostasis and renewal, human pituitary stem cells (PSCs) are incompletely characterized. We describe a human single nucleus RNA-seq and ATAC-seq resource from pediatric, adult, and aged postmortem pituitaries (snpituitaryatlas.princeton.edu) and characterize cell-type-specific gene expression and chromatin accessibility programs for all major pituitary cell lineages. We identify uncommitted PSCs, committing progenitor cells, and sex differences. Pseudotime trajectory analysis indicates that early-life PSCs are distinct from the other age groups. Linear modeling of same-cell multiome data identifies regulatory domain accessibility sites and transcription factors that are significantly associated with gene expression in PSCs compared with other cell types and within PSCs. We identify distinct deterministic mechanisms that contribute to heterogeneous marker expression within PSCs. These findings characterize human stem cell lineages and reveal diverse mechanisms regulating key PSC genes and cell type identity.


Subject(s)
Chromatin , Transcriptome , Aged , Child , Chromatin Immunoprecipitation Sequencing , Female , Humans , Male , Stem Cells/metabolism , Transcription Factors/metabolism , Transcriptome/genetics
10.
Sci Adv ; 7(51): eabl4391, 2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34910520

ABSTRACT

Follicle-stimulating hormone (FSH), a key regulator of ovarian function, is often used in infertility treatment. Gonadal inhibins suppress FSH synthesis by pituitary gonadotrope cells. The TGFß type III receptor, betaglycan, is required for inhibin A suppression of FSH. The inhibin B co-receptor was previously unknown. Here, we report that the gonadotrope-restricted transmembrane protein, TGFBR3L, is the elusive inhibin B co-receptor. TGFBR3L binds inhibin B but not other TGFß family ligands. TGFBR3L knockdown or overexpression abrogates or confers inhibin B activity in cells. Female Tgfbr3l knockout mice exhibit increased FSH levels, ovarian follicle development, and litter sizes. In contrast, female mice lacking both TGFBR3L and betaglycan are infertile. TGFBR3L's function and cell-specific expression make it an attractive new target for the regulation of FSH and fertility.

11.
Nat Commun ; 12(1): 2677, 2021 05 11.
Article in English | MEDLINE | ID: mdl-33976139

ABSTRACT

To provide a multi-omics resource and investigate transcriptional regulatory mechanisms, we profile the transcriptome, chromatin accessibility, and methylation status of over 70,000 single nuclei (sn) from adult mouse pituitaries. Paired snRNAseq and snATACseq datasets from individual animals highlight a continuum between developmental epigenetically-encoded cell types and transcriptionally-determined transient cell states. Co-accessibility analysis-based identification of a putative Fshb cis-regulatory domain that overlaps the fertility-linked rs11031006 human polymorphism, followed by experimental validation illustrate the use of this resource for hypothesis generation. We also identify transcriptional and chromatin accessibility programs distinguishing each major cell type. Regulons, which are co-regulated gene sets sharing binding sites for a common transcription factor driver, recapitulate cell type clustering. We identify both cell type-specific and sex-specific regulons that are highly correlated with promoter accessibility, but not with methylation state, supporting the centrality of chromatin accessibility in shaping cell-defining transcriptional programs. The sn multi-omics atlas is accessible at snpituitaryatlas.princeton.edu.


Subject(s)
Chromatin/genetics , DNA Methylation , Gene Regulatory Networks , Pituitary Gland/metabolism , Regulon/genetics , Transcriptome/genetics , Animals , Female , Gene Expression Regulation , Male , Mice, Inbred C57BL , Models, Genetic , Pituitary Gland/cytology , Promoter Regions, Genetic/genetics , Sex Factors
12.
Proc Natl Acad Sci U S A ; 117(34): 20729-20740, 2020 08 25.
Article in English | MEDLINE | ID: mdl-32796104

ABSTRACT

Tissue-resident macrophages can originate from embryonic or adult hematopoiesis. They play important roles in a wide range of biological processes including tissue remodeling during organogenesis, organ homeostasis, repair following injury, and immune response to pathogens. Although the origins and tissue-specific functions of resident macrophages have been extensively studied in many other tissues, they are not well characterized in skeletal muscle. In the present study, we have characterized the ontogeny of skeletal muscle-resident macrophages by lineage tracing and bone marrow transplant experiments. We demonstrate that skeletal muscle-resident macrophages originate from both embryonic hematopoietic progenitors located within the yolk sac and fetal liver as well as definitive hematopoietic stem cells located within the bone marrow of adult mice. Single-cell-based transcriptome analyses revealed that skeletal muscle-resident macrophages are distinctive from resident macrophages in other tissues as they express a distinct complement of transcription factors and are composed of functionally diverse subsets correlating to their origins. Functionally, skeletal muscle-resident macrophages appear to maintain tissue homeostasis and promote muscle growth and regeneration.


Subject(s)
Macrophages/immunology , Muscle, Skeletal/immunology , Animals , Bone Marrow/metabolism , Bone Marrow Transplantation/methods , Cell Differentiation/genetics , Cell Lineage/genetics , Embryonic Development , Female , Genetic Heterogeneity , Hematopoiesis/genetics , Hematopoietic Stem Cells/metabolism , Homeostasis , Macrophages/metabolism , Macrophages/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Monocytes/immunology , Monocytes/metabolism , Organogenesis/genetics
13.
Sci Rep ; 10(1): 229, 2020 01 14.
Article in English | MEDLINE | ID: mdl-31937892

ABSTRACT

Skeletal muscle is a heterogeneous tissue comprised of muscle fiber and mononuclear cell types that, in addition to movement, influences immunity, metabolism and cognition. We investigated the gene expression patterns of skeletal muscle cells using RNA-seq of subtype-pooled single human muscle fibers and single cell RNA-seq of mononuclear cells from human vastus lateralis, mouse quadriceps, and mouse diaphragm. We identified 11 human skeletal muscle mononuclear cell types, including two fibro-adipogenic progenitor (FAP) cell subtypes. The human FBN1+ FAP cell subtype is novel and a corresponding FBN1+ FAP cell type was also found in single cell RNA-seq analysis in mouse. Transcriptome exercise studies using bulk tissue analysis do not resolve changes in individual cell-type proportion or gene expression. The cell-type gene signatures provide the means to use computational methods to identify cell-type level changes in bulk studies. As an example, we analyzed public transcriptome data from an exercise training study and revealed significant changes in specific mononuclear cell-type proportions related to age, sex, acute exercise and training. Our single-cell expression map of skeletal muscle cell types will further the understanding of the diverse effects of exercise and the pathophysiology of muscle disease.


Subject(s)
Biomarkers/metabolism , Diaphragm/metabolism , Muscle, Skeletal/metabolism , Quadriceps Muscle/metabolism , Single-Cell Analysis/methods , Transcriptome , Adipogenesis , Animals , Diaphragm/cytology , Female , Humans , Male , Mice , Muscle, Skeletal/cytology , Quadriceps Muscle/cytology
14.
J Virol ; 93(20)2019 10 15.
Article in English | MEDLINE | ID: mdl-31375585

ABSTRACT

Early interactions of influenza A virus (IAV) with respiratory epithelium might determine the outcome of infection. The study of global cellular innate immune responses often masks multiple aspects of the mechanisms by which populations of cells work as organized and heterogeneous systems to defeat virus infection, and how the virus counteracts these systems. In this study, we experimentally dissected the dynamics of IAV and human epithelial respiratory cell interaction during early infection at the single-cell level. We found that the number of viruses infecting a cell (multiplicity of infection [MOI]) influences the magnitude of virus antagonism of the host innate antiviral response. Infections performed at high MOIs resulted in increased viral gene expression per cell and stronger antagonist effect than infections at low MOIs. In addition, single-cell patterns of expression of interferons (IFN) and IFN-stimulated genes (ISGs) provided important insights into the contributions of the infected and bystander cells to the innate immune responses during infection. Specifically, the expression of multiple ISGs was lower in infected than in bystander cells. In contrast with other IFNs, IFN lambda 1 (IFNL1) showed a widespread pattern of expression, suggesting a different cell-to-cell propagation mechanism more reliant on paracrine signaling. Finally, we measured the dynamics of the antiviral response in primary human epithelial cells, which highlighted the importance of early innate immune responses at inhibiting virus spread.IMPORTANCE Influenza A virus (IAV) is a respiratory pathogen of high importance to public health. Annual epidemics of seasonal IAV infections in humans are a significant public health and economic burden. IAV also causes sporadic pandemics, which can have devastating effects. The main target cells for IAV replication are epithelial cells in the respiratory epithelium. The cellular innate immune responses induced in these cells upon infection are critical for defense against the virus, and therefore, it is important to understand the complex interactions between the virus and the host cells. In this study, we investigated the innate immune response to IAV in the respiratory epithelium at the single-cell level, providing a better understanding on how a population of epithelial cells functions as a complex system to orchestrate the response to virus infection and how the virus counteracts this system.


Subject(s)
Epithelial Cells/metabolism , Epithelial Cells/virology , Host-Pathogen Interactions/immunology , Immunity, Innate , Influenza A virus/immunology , Influenza, Human/immunology , Influenza, Human/metabolism , Interferons/biosynthesis , Interleukins/biosynthesis , Gene Expression Profiling , Gene Expression Regulation, Viral , Host-Pathogen Interactions/genetics , Humans , Immunity, Innate/genetics , Influenza A virus/genetics , Influenza, Human/genetics , Influenza, Human/virology , Interferons/genetics , Interleukins/genetics , Respiratory Mucosa/immunology , Respiratory Mucosa/metabolism , Respiratory Mucosa/virology , Single-Cell Analysis , Viral Nonstructural Proteins/genetics
15.
J Endocr Soc ; 3(5): 902-920, 2019 May 01.
Article in English | MEDLINE | ID: mdl-31020055

ABSTRACT

LßT2 and αT3-1 are important, widely studied cell line models for the pituitary gonadotropes that were generated by targeted tumorigenesis in transgenic mice. LßT2 cells are more mature gonadotrope precursors than αT3-1 cells. Microsatellite authentication patterns, chromosomal characteristics, and their intercellular variation have not been reported. We performed microsatellite and cytogenetic analysis of both cell types at early passage numbers. Short tandem repeat (STR) profiling was consistent with a mixed C57BL/6J × BALB/cJ genetic background, with distinct patterns for each cell type. Spectral karyotyping in αT3-1 cells revealed cell-to-cell variation in chromosome composition and pseudodiploidy. In LßT2 cells, chromosome counting and karyotyping demonstrated pseudotriploidy and high chromosomal variation among cells. Chromosome copy number variation was confirmed by single-cell DNA sequencing. Chromosomal compositions were consistent with a male sex for αT3-1 and a female sex for LßT2 cells. Among LßT2 stocks used in multiple laboratories, we detected two genetically similar but distinguishable lines via STR authentication, LßT2a and LßT2b. The two lines differed in morphological appearance, with LßT2a having significantly smaller cell and nucleus areas. Analysis of immediate early gene and gonadotropin subunit gene expression revealed variations in basal expression and responses to continuous and pulsatile GnRH stimulation. LßT2a showed higher basal levels of Egr1, Fos, and Lhb but lower Fos induction. Fshb induction reached significance only in LßT2b cells. Our study highlights the heterogeneity in gonadotrope cell line genomes and provides reference STR authentication patterns that can be monitored to improve experimental reproducibility and facilitate comparisons of results within and across laboratories.

16.
Nucleic Acids Res ; 46(21): 11370-11380, 2018 11 30.
Article in English | MEDLINE | ID: mdl-30357357

ABSTRACT

Immediate-early response genes (IEGs) are rapidly and transiently induced following an extracellular signal. Elucidating the IEG response patterns in single cells (SCs) requires assaying large numbers of timed samples at high accuracy while minimizing handling effects. To achieve this, we developed and validated RNA stabilization Buffer for Examination of Single-cell Transcriptomes (RNA-Best), a versatile single-step cell and tissue preservation protocol that stabilizes RNA in intact SCs without perturbing transcription patterns. We characterize for the first time SC heterogeneity in IEG responses to pulsatile gonadotropin-releasing hormone (GnRH) stimuli in pituitary gonadotrope cells. Our study identifies a gene-specific hierarchical pattern of all-or-none transcript induction elicited by increasing concentrations of GnRH. This quantal pattern of gene activation raises the possibility that IEG activation, when accurately resolved at the SC level, may be mediated by gene bits that behave as pure binary switches.


Subject(s)
Early Growth Response Protein 1/genetics , Early Growth Response Protein 2/genetics , Gonadotrophs/drug effects , Gonadotropin-Releasing Hormone/pharmacology , Proto-Oncogene Proteins c-fos/genetics , RNA, Messenger/genetics , Animals , Buffers , Cell Line, Tumor , Dose-Response Relationship, Drug , Early Growth Response Protein 1/metabolism , Early Growth Response Protein 2/metabolism , Genes, Immediate-Early , Genetic Heterogeneity , Gonadotrophs/cytology , Gonadotrophs/metabolism , Mice , Proto-Oncogene Proteins c-fos/metabolism , RNA Stability , RNA, Messenger/metabolism , Sequence Analysis, RNA , Single-Cell Analysis/standards , Transcriptional Activation/drug effects , Transcriptome
17.
Article in English | MEDLINE | ID: mdl-29487567

ABSTRACT

The LßT2 mouse pituitary cell line has many characteristics of a mature gonadotrope and is a widely used model system for studying the developmental processes and the response to gonadotropin-releasing hormone (GnRH). The global epigenetic landscape, which contributes to cell-specific gene regulatory mechanisms, and the single-cell transcriptome response variation of LßT2 cells have not been previously investigated. Here, we integrate the transcriptome and genome-wide chromatin accessibility state of LßT2 cells during GnRH stimulation. In addition, we examine cell-to-cell variability in the transcriptional response to GnRH using Gel bead-in-Emulsion Drop-seq technology. Analysis of a bulk RNA-seq data set obtained 45 min after exposure to either GnRH or vehicle identified 112 transcripts that were regulated >4-fold by GnRH (FDR < 0.05). The top regulated transcripts constitute, as determined by Bayesian massive public data integration analysis, a human pituitary-relevant coordinated gene program. Chromatin accessibility [assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq)] data sets generated from GnRH-treated LßT2 cells identified more than 58,000 open chromatin regions, some containing notches consistent with bound transcription factor footprints. The study of the most prominent open regions showed that 75% were in transcriptionally active promoters or introns, supporting their involvement in active transcription. Lhb, Cga, and Egr1 showed significantly open chromatin over their promoters. While Fshb was closed over its promoter, several discrete significantly open regions were found at -40 to -90 kb, which may represent novel upstream enhancers. Chromatin accessibility determined by ATAC-seq was associated with high levels of gene expression determined by RNA-seq. We obtained high-quality single-cell Gel bead-in-Emulsion Drop-seq transcriptome data, with an average of >4,000 expressed genes/cell, from 1,992 vehicle- and 1,889 GnRH-treated cells. While the individual cell expression patterns showed high cell-to-cell variation, representing both biological and measurement variation, the average expression patterns correlated well with bulk RNA-seq data. Computational assignment of each cell to its precise cell cycle phase showed that the response to GnRH was unaffected by cell cycle. To our knowledge, this study represents the first genome-wide epigenetic and single-cell transcriptomic characterization of this important gonadotrope model. The data have been deposited publicly and should provide a resource for hypothesis generation and further study.

18.
J Biol Chem ; 292(23): 9815-9829, 2017 06 09.
Article in English | MEDLINE | ID: mdl-28385888

ABSTRACT

Neuroendocrine control of reproduction by brain-secreted pulses of gonadotropin-releasing hormone (GnRH) represents a longstanding puzzle about extracellular signal decoding mechanisms. GnRH regulates the pituitary gonadotropin's follicle-stimulating hormone (FSH) and luteinizing hormone (LH), both of which are heterodimers specified by unique ß subunits (FSHß/LHß). Contrary to Lhb, Fshb gene induction has a preference for low-frequency GnRH pulses. To clarify the underlying regulatory mechanisms, we developed three biologically anchored mathematical models: 1) parallel activation of Fshb inhibitory factors (e.g. inhibin α and VGF nerve growth factor-inducible), 2) activation of a signaling component with a refractory period (e.g. G protein), and 3) inactivation of a factor needed for Fshb induction (e.g. growth differentiation factor 9). Simulations with all three models recapitulated the Fshb expression levels obtained in pituitary gonadotrope cells perifused with varying GnRH pulse frequencies. Notably, simulations altering average concentration, pulse duration, and pulse frequency revealed that the apparent frequency-dependent pattern of Fshb expression in model 1 actually resulted from variations in average GnRH concentration. In contrast, models 2 and 3 showed "true" pulse frequency sensing. To resolve which components of this GnRH signal induce Fshb, we developed a high-throughput parallel experimental system. We analyzed over 4,000 samples in experiments with varying near-physiological GnRH concentrations and pulse patterns. Whereas Egr1 and Fos genes responded only to variations in average GnRH concentration, Fshb levels were sensitive to both average concentration and true pulse frequency. These results provide a foundation for understanding the role of multiple regulatory factors in modulating Fshb gene activity.


Subject(s)
Computer Simulation , Follicle Stimulating Hormone, beta Subunit/biosynthesis , Gene Expression Regulation/physiology , Gonadotropin-Releasing Hormone/biosynthesis , Early Growth Response Protein 1/metabolism , Humans , Luteinizing Hormone, beta Subunit/biosynthesis , Models, Biological , Proto-Oncogene Proteins c-fos/metabolism
19.
PLoS One ; 10(6): e0128944, 2015.
Article in English | MEDLINE | ID: mdl-26083378

ABSTRACT

Dystrophin (Dmd) is a structural protein that links the extracellular matrix to actin filaments in muscle fibers and is required for the maintenance of muscles integrity. Mutations in Dmd lead to muscular dystrophies in humans and other vertebrates. Here, we report the characterization of a zebrafish gene trap line that fluorescently labels the endogenous Dmd protein (Dmd-citrine, Gt(dmd-citrine) ct90a). We show that the Dmd-citrine line recapitulates endogenous dmd transcript expression and Dmd protein localization. Using this Dmd-citrine line, we follow Dmd localization to the myosepta in real-time using time-lapse microscopy, and find that the accumulation of Dmd protein at the transverse myosepta coincides with the onset of myotome formation, a critical stage in muscle maturation. We observed that Dmd protein localizes specifically to the myosepta prior to dmd mRNA localization. Additionally, we demonstrate that the Dmd-citrine line can be used to assess muscular dystrophy following both genetic and physical disruptions of the muscle.


Subject(s)
Bacterial Proteins/genetics , Luminescent Proteins/genetics , Membrane Proteins/genetics , Muscle Proteins/genetics , Muscle, Skeletal/metabolism , RNA, Messenger/genetics , Recombinant Fusion Proteins/genetics , Zebrafish Proteins/genetics , Zebrafish/genetics , Animals , Bacterial Proteins/metabolism , Embryo, Nonmammalian , Gene Expression Regulation, Developmental , Luminescent Proteins/metabolism , Membrane Proteins/metabolism , Microscopy, Fluorescence , Morphogenesis/genetics , Morpholinos , Muscle Proteins/metabolism , Muscle, Skeletal/cytology , Muscle, Skeletal/embryology , Plasmids/chemistry , Plasmids/metabolism , RNA, Messenger/metabolism , Recombinant Fusion Proteins/metabolism , Time-Lapse Imaging , Zebrafish/embryology , Zebrafish/metabolism , Zebrafish Proteins/metabolism
20.
Genes Dev ; 25(21): 2306-20, 2011 Nov 01.
Article in English | MEDLINE | ID: mdl-22056673

ABSTRACT

We report a multifunctional gene-trapping approach, which generates full-length Citrine fusions with endogenous proteins and conditional mutants from a single integration event of the FlipTrap vector. We identified 170 FlipTrap zebrafish lines with diverse tissue-specific expression patterns and distinct subcellular localizations of fusion proteins generated by the integration of an internal citrine exon. Cre-mediated conditional mutagenesis is enabled by heterotypic lox sites that delete Citrine and "flip" in its place mCherry with a polyadenylation signal, resulting in a truncated fusion protein. Inducing recombination with Cerulean-Cre results in fusion proteins that often mislocalize, exhibit mutant phenotypes, and dramatically knock down wild-type transcript levels. FRT sites in the vector enable targeted genetic manipulation of the trapped loci in the presence of Flp recombinase. Thus, the FlipTrap captures the functional proteome, enabling the visualization of full-length fluorescent fusion proteins and interrogation of function by conditional mutagenesis and targeted genetic manipulation.


Subject(s)
Proteome , Proteomics/methods , Animals , Bacterial Proteins/genetics , Databases, Protein , Embryo, Nonmammalian , Genetic Vectors , Internet , Luminescent Proteins/genetics , Molecular Sequence Annotation , Mutation , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL
...