Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Nat Commun ; 9(1): 3124, 2018 08 07.
Article in English | MEDLINE | ID: mdl-30087327

ABSTRACT

Arctic amplification is a consequence of surface albedo, cloud, and temperature feedbacks, as well as poleward oceanic and atmospheric heat transport. However, the relative impact of changes in sea surface temperature (SST) patterns and ocean heat flux sourced from different regions on Arctic temperatures are not well constrained. We modify ocean-to-atmosphere heat fluxes in the North Pacific and North Atlantic in a climate model to determine the sensitivity of Arctic temperatures to zonal heterogeneities in northern hemisphere SST patterns. Both positive and negative ocean heat flux perturbations from the North Pacific result in greater global and Arctic surface air temperature anomalies than equivalent magnitude perturbations from the North Atlantic; a response we primarily attribute to greater moisture flux from the subpolar extratropics to Arctic. Enhanced poleward latent heat and moisture transport drive sea-ice retreat and low-cloud formation in the Arctic, amplifying Arctic surface warming through the ice-albedo feedback and infrared warming effect of low clouds. Our results imply that global climate sensitivity may be dependent on patterns of ocean heat flux in the northern hemisphere.

3.
Philos Trans A Math Phys Eng Sci ; 373(2054)2015 Nov 13.
Article in English | MEDLINE | ID: mdl-26438287

ABSTRACT

The term 'feedback' is used ubiquitously in climate research, but implies varied meanings in different contexts. From a specific process that locally affects a quantity, to a formal framework that attempts to determine a global response to a forcing, researchers use this term to separate, simplify and quantify parts of the complex Earth system. We combine new model results with a historical and educational perspective to organize existing ideas around feedbacks and linear models. Our results suggest that the state- and forcing-dependency of feedbacks are probably not appreciated enough, and not considered appropriately in many studies. A non-constant feedback parameter likely explains some of the differences in estimates of equilibrium climate sensitivity from different methods and types of data. Clarifying the value and applicability of the linear forcing feedback framework and a better quantification of feedbacks on various timescales and spatial scales remains a high priority in order to better understand past and predict future changes in the climate system.

SELECTION OF CITATIONS
SEARCH DETAIL
...