Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Front Mol Biosci ; 10: 1242943, 2023.
Article in English | MEDLINE | ID: mdl-37905231

ABSTRACT

The holm oak (Quercus ilex subsp. ballota) is the most representative species of the Mediterranean Basin and the agrosylvopastoral Spanish "dehesa" ecosystem. Being part of our life, culture, and subsistence since ancient times, it has significant environmental and economic importance. More recently, there has been a renewed interest in using the Q. ilex acorn as a functional food due to its nutritional and nutraceutical properties. However, the holm oak and its related ecosystems are threatened by different factors, with oak decline syndrome and climate change being the most worrying in the short and medium term. Breeding programs informed by the selection of elite genotypes seem to be the most plausible biotechnological solution to rescue populations under threat. To achieve this and other downstream analyses, we need a high-quality and well-annotated Q. ilex reference genome. Here, we introduce the first draft genome assembly of Q. ilex using long-read sequencing (PacBio). The assembled nuclear haploid genome had 530 contigs totaling 842.2 Mbp (N50 = 3.3 Mbp), of which 448.7 Mb (53%) were repetitive sequences. We annotated 39,443 protein-coding genes of which 94.80% were complete and single-copy genes. Phylogenetic analyses showed no evidence of a recent whole-genome duplication, and high synteny of the 12 chromosomes between Q. ilex and Quercus lobata and between Q. ilex and Quercus robur. The chloroplast genome size was 142.3 Kbp with 149 protein-coding genes successfully annotated. This first draft should allow for the validation of omics data as well as the identification and functional annotation of genes related to phenotypes of interest such as those associated with resilience against oak decline syndrome and climate change and higher acorn productivity and nutraceutical value.

2.
Genes (Basel) ; 14(3)2023 02 21.
Article in English | MEDLINE | ID: mdl-36980808

ABSTRACT

Climate change represents the main problem for agricultural crops, and the constitution of heat-tolerant genotypes is an important breeder's strategy to reduce yield losses. The aim of the present study was to investigate the whole genome of a heat-tolerant tomato genotype (E42), in order to identify candidate genes involved in its response to high temperature. E42 presented a high variability for chromosomes 1, 4, 7 and 12, and phylogenetic analysis highlighted its relationship with the wild S. pimpinellifolium species. Variants with high (18) and moderate (139) impact on protein function were retrieved from two lists of genes related to heat tolerance and reproduction. This analysis permitted us to prioritize a subset of 35 candidate gene mapping in polymorphic regions, some colocalizing in QTLs controlling flowering in tomato. Among these genes, we identified 23 HSPs, one HSF, six involved in flowering and five in pollen activity. Interestingly, one gene coded for a flowering locus T1 and mapping on chromosome 11 resides in a QTL region controlling flowering and also showed 100% identity with an S. pimpinellifolium allele. This study provides useful information on both the E42 genetic background and heat stress response, and further studies will be conducted to validate these genes.


Subject(s)
Solanum lycopersicum , Thermotolerance , Solanum lycopersicum/genetics , Thermotolerance/genetics , Phylogeny , Heat-Shock Response/genetics , Genomics
3.
Gene ; 838: 146698, 2022 Sep 05.
Article in English | MEDLINE | ID: mdl-35772651

ABSTRACT

PURPOSE: The pandemic diffusion of Coronavirus Disease 2019 (COVID-19) has highlighted significant gender-related differences in disease severity. Despite several hypotheses being proposed, how the genetic background of COVID-19 patients might impact clinical outcomes remains largely unknown. METHODS: We collected blood samples from 192 COVID-19 patients (115 men, 77 women, mean age 67 ± 19 years) admitted between March and June 2020 at two different hospital centers in Italy, and determined the allelic distribution of nine Single Nucleotide Polymorphisms (SNPs), located at the 3'Regulatory Region (3'RR)-1 in the immunoglobulin (Ig) heavy chain locus, including *1 and *2 alleles of polymorphic hs1.2 enhancer region. RESULTS: In COVID-19 patients, the genotyped SNPs exhibited strong Linkage Disequilibrium and produced 7 specific haplotypes, associated to different degrees of disease severity, including the occurrence of pneumonia. Additionally, the allele *2, which comprises a DNA binding site for the Estrogen receptor alpha (ERα) in the polymorphic enhancer hs1.2 of 3'RR-1, was significantly enriched in women with a less severe disease. CONCLUSIONS: These findings document genetic variants associated to individual clinical severity of COVID-19 disease. Most specifically, a novel genetic protective factor was identified that might explain the sex-related differences in immune response to Sars-COV-2 infection in humans.


Subject(s)
COVID-19 , Aged , Aged, 80 and over , Alleles , COVID-19/genetics , Enhancer Elements, Genetic , Female , Humans , Immunoglobulin Heavy Chains/genetics , Male , Middle Aged , SARS-CoV-2/genetics
5.
J Hazard Mater ; 428: 128246, 2022 04 15.
Article in English | MEDLINE | ID: mdl-35030484

ABSTRACT

Phytoremediation involving the use of microorganisms with tolerant plant species represents a new frontier for on-site remediation of pluricontaminated soils. In this study, the effectiveness of a biotechnological strategy, involving the use of Festuca arundinacea and a pool of microorganisms, was assessed by a mesocosm experiment and an in-depth rhizospheric metatranscriptomic analysis. The chemical profile of mesocosm soil at the end of the experiment (240 days) showed that the decrease of trace elements such as Cd, Hg, Pb, Sn, Tl, V and Zn in the soil was enhanced by our biological combination. Additionally, also the organic pollutants (PAHs and PCBs) were strongly reduced up to 40.5%. About two million transcripts were identified and used for taxonomic and functional profiling. Transcripts read counts, tripartite among plant, bacteria and fungi were identified and quantified to provide an overview of the complex soil community composition. We observed that Actinobacteria and fungi abundance might be involved in remediation success. Functional analyses showed that Trehalose Biosynthesis and the antioxidant activity might have played a key-role in metaorganism effective interactions. The biotechnological approach remodeled the transcriptional profile toward organic pollutant degradation and heavy metal stress response.


Subject(s)
Festuca , Metals, Heavy , Soil Pollutants , Biodegradation, Environmental , Metals, Heavy/analysis , Soil , Soil Microbiology , Soil Pollutants/analysis
6.
Genes (Basel) ; 13(1)2021 12 24.
Article in English | MEDLINE | ID: mdl-35052394

ABSTRACT

Pineapple (Ananas comosus (L.) Merr.) is the second most important tropical fruit crop globally, and 'MD2' is the most important cultivated variety. A high-quality genome is important for molecular-based breeding, but available pineapple genomes still have some quality limitations. Here, PacBio and Hi-C data were used to develop a new high-quality MD2 assembly and gene prediction. Compared to the previous MD2 assembly, major improvements included a 26.6-fold increase in contig N50 length, phased chromosomes, and >6000 new genes. The new MD2 assembly also included 161.6 Mb additional sequences and >3000 extra genes compared to the F153 genome. Over 48% of the predicted genes harbored potential deleterious mutations, indicating that the high level of heterozygosity in this species contributes to maintaining functional alleles. The genome was used to characterize the FAR1-RELATED SEQUENCE (FRS) genes that were expanded in pineapple and rice. Transposed and dispersed duplications contributed to expanding the numbers of these genes in the pineapple lineage. Several AcFRS genes were differentially expressed among tissue-types and stages of flower development, suggesting that their expansion contributed to evolving specialized functions in reproductive tissues. The new MD2 assembly will serve as a new reference for genetic and genomic studies in pineapple.


Subject(s)
Ananas/genetics , Chromosomes, Plant/genetics , Genetic Variation , Genome, Plant , Haplotypes , Molecular Sequence Annotation/methods , Plant Proteins/genetics , Ananas/growth & development , Chromosome Mapping , Gene Expression Regulation, Plant , Genomics , Sequence Analysis, DNA
7.
Hortic Res ; 7(1): 187, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-33328460

ABSTRACT

Melon is as an alternative model to understand fruit ripening due to the coexistence of climacteric and non-climacteric varieties within the same species, allowing the study of the processes that regulate this complex trait with genetic approaches. We phenotyped a population of recombinant inbred lines (RILs), obtained by crossing a climacteric (Védrantais, cantalupensis type) and a non-climcteric variety (Piel de Sapo T111, inodorus type), for traits related to climacteric maturation and ethylene production. Individuals in the RIL population exhibited various combinations of phenotypes that differed in the amount of ethylene produced, the early onset of ethylene production, and other phenotypes associated with ripening. We characterized a major QTL on chromosome 8, ETHQV8.1, which is sufficient to activate climacteric ripening, and other minor QTLs that may modulate the climacteric response. The ETHQV8.1 allele was validated by using two reciprocal introgression line populations generated by crossing Védrantais and Piel de Sapo and analyzing the ETHQV8.1 region in each of the genetic backgrounds. A Genome-wide association study (GWAS) using 211 accessions of the ssp. melo further identified two regions on chromosome 8 associated with the production of aromas, one of these regions overlapping with the 154.1 kb interval containing ETHQV8.1. The ETHQV8.1 region contains several candidate genes that may be related to fruit ripening. This work sheds light into the regulation mechanisms of a complex trait such as fruit ripening.

8.
Int J Mol Sci ; 21(13)2020 Jul 07.
Article in English | MEDLINE | ID: mdl-32646057

ABSTRACT

European chestnut orchards are multifunctional agroforestry systems with a key role in environmental management. Their biodiversity is at risk of erosion and farmers do not have enough tools to protect and valorize traditional ecotypes. In particular, cost effective and reliable molecular markers for cultivar identification are lacking. The aim of this research was to develop a new molecular tool for varietal identification in European chestnuts. A set of cultivars was preliminarily characterized to evaluate the range of genetic diversity using random amplified polymorphic DNA (RAPD) markers. The genetic distances indicated a sufficiently wide variability range among tested genotypes and confirmed they were suitable for our goal. A single nucleotide polymorphism (SNP) mining within 64 expressed sequence tags (EST), covering all the linkage groups, was performed by high-resolution melting (HRM) and validated by target resequencing. Fifty-six SNPs were retrieved by monitoring the variability present on the whole set of considered cultivars in loci uniformly distributed on the genome. A subset of 37 SNPs was finally transformed into kompetitive allele-specific PCR (KASP) markers that were successfully evaluated for varietal discrimination. Three assays (C1083, G0115 and A5096) were identified as necessary and sufficient for distinguishing among the tested cultivars. The developed tools can be effectively exploited by stakeholders for improving the management of the European chestnut genetic resources.


Subject(s)
Aesculus/genetics , Polymorphism, Single Nucleotide/genetics , Alleles , Biodiversity , Europe , Expressed Sequence Tags/metabolism , Genetic Linkage/genetics , Genetic Markers/genetics , Genome, Plant/genetics , Genotype , Random Amplified Polymorphic DNA Technique/methods
9.
Genes (Basel) ; 11(8)2020 07 24.
Article in English | MEDLINE | ID: mdl-32722275

ABSTRACT

The Solanum pennellii introgression lines (ILs) have been exploited to map quantitative trait loci (QTLs) and identify favorable alleles that could improve fruit quality traits in tomato varieties. Over the past few years, ILs exhibiting increased content of ascorbic acid in the fruit have been selected, among which the sub-line R182. The aims of this work were to identify the genes of the wild donor S. pennellii harbored by the sub-line and to detect genes controlling ascorbic acid accumulation by using genomics tools. A Genotyping-By-Sequencing (GBS) approach confirmed that no wild introgressions were present in the sub-line besides one region on chromosome 7. By using a dense single nucleotide polymorphism (SNP) map obtained by RNA sequencing (RNA-Seq), the wild region of the sub-line was finely identified; thus, defining 39 wild genes that replaced 33 genes of the ILs genetic background (cv. M82). The differentially expressed genes mapping in the region and the variants detected among the cultivated and the wild alleles evidenced the potential role of the novel genes present in the wild region. Interestingly, one upregulated gene, annotated as a major facilitator superfamily protein, showed a novel structure in R182, with respect to the parental lines. These genes will be further investigated using gene editing strategies.


Subject(s)
Ascorbic Acid/metabolism , Fruit/metabolism , Plant Proteins/metabolism , Quantitative Trait Loci , Solanum lycopersicum/genetics , Chromosomes, Plant/genetics , Fruit/genetics , Fruit/growth & development , Genomics , Solanum lycopersicum/growth & development , Solanum lycopersicum/metabolism , Phenotype , Plant Proteins/genetics
10.
Nat Genet ; 51(11): 1607-1615, 2019 11.
Article in English | MEDLINE | ID: mdl-31676864

ABSTRACT

Melon is an economically important fruit crop that has been cultivated for thousands of years; however, the genetic basis and history of its domestication still remain largely unknown. Here we report a comprehensive map of the genomic variation in melon derived from the resequencing of 1,175 accessions, which represent the global diversity of the species. Our results suggest that three independent domestication events occurred in melon, two in India and one in Africa. We detected two independent sets of domestication sweeps, resulting in diverse characteristics of the two subspecies melo and agrestis during melon breeding. Genome-wide association studies for 16 agronomic traits identified 208 loci significantly associated with fruit mass, quality and morphological characters. This study sheds light on the domestication history of melon and provides a valuable resource for genomics-assisted breeding of this important crop.


Subject(s)
Chromosome Mapping , Cucurbitaceae/genetics , Domestication , Genome, Plant , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Cucurbitaceae/classification , Cucurbitaceae/growth & development , Genome-Wide Association Study , Genomics , Phenotype , Plant Breeding
11.
Front Plant Sci ; 10: 190, 2019.
Article in English | MEDLINE | ID: mdl-30853967

ABSTRACT

The Solanum pennellii Introgression Line (IL) population can be exploited to identify favorable alleles that can improve yield and fruit quality traits in commercial tomato varieties. Over the past few years, we have selected ILs that exhibit increased content of antioxidant compounds in the fruit compared to the cultivar M82, which represents the genetic background in which the different wild regions of the S. pennellii ILs were included. Recently, we have identified seven sub-lines of the IL7-3 accumulating different amounts of antioxidants in the ripe fruit. Since the wild region carried on chromosome 7 induces a low fruit production in IL7-3, the first aim of the present work was to evaluate yield performances of the selected sub-lines in three experimental fields located in the South of Italy. Another aim was to confirm in the same lines the high levels of antioxidants and evaluate other fruit quality traits. On red ripe fruit, the levels of soluble solids content, firmness, and ascorbic acid (AsA) were highly variable among the sub-lines grown in three environmental conditions, evidencing a significant genotype by environment interaction for soluble solids and AsA content. Only one sub-line (coded R182) exhibited a significantly higher firmness, even though no differences were observed for this trait between the parental lines M82 and IL7-3. The same sub-line showed significantly higher AsA content compared to M82, thus resembling IL7-3. Even though IL7-3 always exhibited a significantly lower yield, all the sub-lines showed yield variability over the three trials. Interestingly, the sub-line R182, selected for its better performances in terms of fruit quality, in all the trials showed a production comparable to that of the control line M82. A group of species-specific molecular markers was tested on R182 and on the parental genotypes in order to better define the wild genomic regions carried by the elite line R182. In these regions three candidate genes that could increase the level of AsA in the fruit were identified. In the future, the line R182 could be used as pre-breeding material in order to obtain new varieties improved for nutritional traits.

12.
Front Plant Sci ; 10: 1815, 2019.
Article in English | MEDLINE | ID: mdl-32076428

ABSTRACT

The published melon (Cucumis melo L.) reference genome assembly (v3.6.1) has still 41.6 Mb (Megabases) of sequences unassigned to pseudo-chromosomes and about 57 Mb of gaps. Although different approaches have been undertaken to improve the melon genome assembly in recent years, the high percentage of repeats (~40%) and limitations due to read length have made it difficult to resolve gaps and scaffold's misassignments to pseudomolecules, especially in the heterochromatic regions. Taking advantage of the PacBio single- molecule real-time (SMRT) sequencing technology, an improvement of the melon genome was achieved. About 90% of the gaps were filled and the unassigned sequences were drastically reduced. A lift-over of the latest annotation v4.0 allowed to re-collocate protein-coding genes belonging to the unassigned sequences to the pseudomolecules. A direct proof of the improvement reached in the new melon assembly was highlighted looking at the improved annotation of the transposable element fraction. By screening the new assembly, we discovered many young (inserted less than 2Mya), polymorphic LTR-retrotransposons that were not captured in the previous reference genome. These elements sit mostly in the pericentromeric regions, but some of them are inserted in the upstream region of genes suggesting that they can have regulatory potential. This improved reference genome will provide an invaluable tool for identifying new gene or transposon variants associated with important phenotypes.

13.
BMC Bioinformatics ; 19(Suppl 15): 435, 2018 Nov 30.
Article in English | MEDLINE | ID: mdl-30497367

ABSTRACT

BACKGROUND: "Omics" approaches may provide useful information for a deeper understanding of speciation events, diversification and function innovation. This can be achieved by investigating the molecular similarities at sequence level between species, allowing the definition of ortholog and paralog genes. However, the spreading of sequenced genome, often endowed with still preliminary annotations, requires suitable bioinformatics to be appropriately exploited in this framework. RESULTS: We presented here a multilevel comparative approach to investigate on genome evolutionary relationships and peculiarities of two fleshy fruit species of relevant agronomic interest, Solanum lycopersicum (tomato) and Vitis vinifera (grapevine). We defined 17,823 orthology relationships between tomato and grapevine reference gene annotations. The resulting orthologs are associated with the detected paralogs in each species, permitting the definition of gene networks, useful to investigate the different relationships. The reconciliation of the compared collections in terms of an updating of the functional descriptions was also exploited. All the results were made accessible in ComParaLogs, a dedicated bioinformatics platform available at http://biosrv.cab.unina.it/comparalogs/gene/search . CONCLUSIONS: The aim of the work was to suggest a reliable approach to detect all similarities of gene loci between two species based on the integration of results from different levels of information, such as the gene, the transcript and the protein sequences, overcoming possible limits due to exclusive protein versus protein comparisons. This to define reliable ortholog and paralog genes, as well as species specific gene loci in the two species, overcoming limits due to the possible draft nature of preliminary gene annotations. Moreover, reconciled functional descriptions, as well as common or peculiar enzymatic classes and protein domains from tomato and grapevine, together with the definition of species-specific gene sets after the pairwise comparisons, contributed a comprehensive set of information useful to comparatively exploit the two species gene annotations and investigate on differences between species with climacteric and non-climacteric fruits. In addition, the definition of networks of ortholog genes and of associated paralogs, and the organization of web-based interfaces for the exploration of the results, defined a friendly computational bench-work in support of comparative analyses between two species.


Subject(s)
Biological Evolution , Computational Biology/methods , Molecular Sequence Annotation , Multilevel Analysis , Solanum lycopersicum/genetics , Vitis/genetics , Gene Expression Regulation, Plant , Gene Regulatory Networks , Genome, Plant , Phylogeny , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcription Factors/metabolism
14.
Sci Rep ; 8(1): 8088, 2018 05 24.
Article in English | MEDLINE | ID: mdl-29795526

ABSTRACT

We report an improved assembly (v3.6.1) of the melon (Cucumis melo L.) genome and a new genome annotation (v4.0). The optical mapping approach allowed correcting the order and the orientation of 21 previous scaffolds and permitted to correctly define the gap-size extension along the 12 pseudomolecules. A new comprehensive annotation was also built in order to update the previous annotation v3.5.1, released more than six years ago. Using an integrative annotation pipeline, based on exhaustive RNA-Seq collections and ad-hoc transposable element annotation, we identified 29,980 protein-coding loci. Compared to the previous version, the v4.0 annotation improved gene models in terms of completeness of gene structure, UTR regions definition, intron-exon junctions and reduction of fragmented genes. More than 8,000 new genes were identified, one third of them being well supported by RNA-Seq data. To make all the new resources easily exploitable and completely available for the scientific community, a redesigned Melonomics genomic platform was released at http://melonomics.net . The resources produced in this work considerably increase the reliability of the melon genome assembly and resolution of the gene models paving the way for further studies in melon and related species.


Subject(s)
Cucumis melo/genetics , Genome, Plant , Molecular Sequence Annotation , Sequence Analysis, DNA , Base Sequence , Chromosome Mapping , Chromosomes, Plant , Cucurbitaceae/classification , Cucurbitaceae/genetics , Genomics , Phylogeny , Reference Standards
15.
Front Plant Sci ; 8: 1679, 2017.
Article in English | MEDLINE | ID: mdl-29018473

ABSTRACT

Sugar content is the major determinant of both fruit quality and consumer acceptance in melon (Cucumis melo L), and is a primary target for crop improvement. Near-isogenic lines (NILs) derived from the intraspecific cross between a "Piel de Sapo" (PS) type and the exotic cultivar "Songwhan Charmi" (SC), and several populations generated from the cross of PS × Ames 24294 ("Trigonus"), a wild melon, were used to identify QTL related to sugar and organic acid composition. Seventy-eight QTL were detected across several locations and different years, with three important clusters related to sugar content located on chromosomes 4, 5, and 7. Two PS × SC NILs (SC5-1 and SC5-2) sharing a common genomic interval of 1.7 Mb at the top of chromosome 5 contained QTL reducing soluble solids content (SSC) and sucrose content by an average of 29 and 68%, respectively. This cluster collocated with QTL affecting sugar content identified in other studies in lines developed from the PS × SC cross and supported the presence of a stable consensus locus involved in sugar accumulation that we named SUCQSC5.1. QTL reducing soluble solids and sucrose content identified in the "Trigonus" mapping populations, as well as QTL identified in previous studies from other ssp. agrestis sources, collocated with SUCQSC5.1, suggesting that they may be allelic and implying a role in domestication. In subNILs derived from the PS × SC5-1 cross, SUCQSC5.1 reduced SSC and sucrose content by an average of 18 and 34%, respectively, and was fine-mapped to a 56.1 kb interval containing four genes. Expression analysis of the candidate genes in mature fruit showed differences between the subNILs with PS alleles that were "high" sugar and SC alleles of "low" sugar phenotypes for MELO3C014519, encoding a putative BEL1-like homeodomain protein. Sequence differences in the gene predicted to affect protein function were restricted to SC and other ssp. agrestis cultivar groups. These results provide the basis for further investigation of genes affecting sugar accumulation in melon.

16.
BMC Genomics ; 18(1): 59, 2017 01 09.
Article in English | MEDLINE | ID: mdl-28068911

ABSTRACT

BACKGROUND: Melon (Cucumis melo L.) is one of the most important horticultural species, which includes several taxonomic groups. With the advent of next-generation sequencing, single nucleotide polymorphism (SNP) markers are widely used in the study of genetic diversity and genomics. RESULTS: We report the first successful application of genotyping-by-sequencing (GBS) technology in melon. We detected 25,422 SNPs by the analysis of 72 accessions collected in Apulia, a secondary centre of diversity in Southern Italy. Analyses of genetic structure, principal components, and hierarchical clustering support the identification of three distinct subpopulations. One of them includes accessions known with the folk name of 'carosello', referable to the chate taxonomic group. This is one of the oldest domesticated forms of C. melo, once widespread in Europe and now exposed to the risk of genetic erosion. The second subpopulation contains landraces of 'barattiere', a regional vegetable production that was never characterized at the DNA level and we show was erroneously considered another form of chate melon. The third subpopulation includes genotypes of winter melon (C. melo var. inodorus). Genetic analysis within each subpopulation revealed patterns of diversity associated with fruit phenotype and geographical origin. We used SNP data to describe, for each subpopulation, the average linkage disequilibrium (LD) decay, and to highlight genomic regions possibly resulting from directional selection and associated with phenotypic variation. CONCLUSIONS: We used GBS to characterize patterns of genetic diversity and genomic features within C. melo. We provide useful information to preserve endangered gene pools and to guide the use of germplasm in breeding. Finally, our findings lay a foundation for molecular breeding approaches and the identification of genes underlying phenotypic traits.


Subject(s)
Cucumis melo/genetics , Gene Pool , Genotyping Techniques , Polymorphism, Single Nucleotide , Sequence Analysis, DNA , Genome-Wide Association Study , Linkage Disequilibrium
17.
DNA Res ; 24(1): 81-91, 2017 Feb 01.
Article in English | MEDLINE | ID: mdl-28011720

ABSTRACT

The recent development of Sequence Capture methodology represents a powerful strategy for enhancing data generation to assess genetic variation of targeted genomic regions. Here, we present SUPER-CAP, a bioinformatics web tool aimed at handling Sequence Capture data, fine calculating the allele frequency of variations and building genotype-specific sequence of captured genes. The dataset used to develop this in silico strategy consists of 378 loci and related regulative regions in a collection of 44 tomato landraces. About 14,000 high-quality variants were identified. The high depth (>40×) of coverage and adopting the correct filtering criteria allowed identification of about 4,000 rare variants and 10 genes with a different copy number variation. We also show that the tool is capable to reconstruct genotype-specific sequences for each genotype by using the detected variants. This allows evaluating the combined effect of multiple variants in the same protein. The architecture and functionality of SUPER-CAP makes the software appropriate for a broad set of analyses including SNP discovery and mining. Its functionality, together with the capability to process large data sets and efficient detection of sequence variation, makes SUPER-CAP a valuable bioinformatics tool for genomics and breeding purposes.


Subject(s)
Sequence Analysis/methods , Data Mining , Gene Frequency , Genes, Plant , Solanum lycopersicum/genetics , Polymorphism, Single Nucleotide
18.
Front Plant Sci ; 7: 1484, 2016.
Article in English | MEDLINE | ID: mdl-27757117

ABSTRACT

Solanum lycopersicum represents an important dietary source of bioactive compounds including the antioxidants flavonoids and phenolic acids. We previously identified two genotypes (IL7-3 and IL12-4) carrying loci from the wild species Solanum pennellii, which increased antioxidants in the fruit. Successively, these lines were crossed and two genotypes carrying both introgressions at the homozygous condition (DHO88 and DHO88-SL) were selected. The amount of total antioxidant compounds was increased in DHOs compared to both ILs and the control genotype M82. In order to understand the genetic mechanisms underlying the positive interaction between the two wild regions pyramided in DHO genotypes, detailed analyses of the metabolites accumulated in the fruit were carried out by colorimetric methods and LC/MS/MS. These analyses evidenced a lower content of flavonoids in DHOs and in ILs, compared to M82. By contrast, in the DHOs the relative content of phenolic acids increased, particularly the fraction of hexoses, thus evidencing a redirection of the phenylpropanoid flux toward the biosynthesis of phenolic acid glycosides in these genotypes. In addition, the line DHO88 exhibited a lower content of free phenolic acids compared to M82. Interestingly, the two DHOs analyzed differ in the size of the wild region on chromosome 12. Genes mapping in the introgression regions were further investigated. Several genes of the phenylpropanoid biosynthetic pathway were identified, such as one 4-coumarate:CoA ligase and two UDP-glycosyltransferases in the region 12-4 and one chalcone isomerase and one UDP-glycosyltransferase in the region 7-3. Transcriptomic analyses demonstrated a different expression of the detected genes in the ILs and in the DHOs compared to M82. These analyses, combined with biochemical analyses, suggested a central role of the 4-coumarate:CoA ligase in redirecting the phenylpropanoid pathways toward the biosynthesis of phenolic acids in the pyramided lines. Moreover, analyses here carried out suggest the presence in the introgression regions of novel regulatory proteins, such as one Myb4 detected on chromosome 7 and one bHLH detected in chromosome 12. Overall our data indicate that structural and regulatory genes identified in this study might have a key role for the manipulation of the phenylpropanoid metabolic pathway in tomato fruit.

19.
Plant Reprod ; 29(1-2): 133-47, 2016 06.
Article in English | MEDLINE | ID: mdl-27271281

ABSTRACT

KEY MESSAGE: Bioinformatics for Pollen. Pollen plays a key role in crop production, and its development is the most delicate phase in reproduction. Different metabolic pathways are involved in pollen development, and changes in the level of some metabolites, as well as responses to stress, are correlated with the reduction in pollen viability, leading consequently to a decrease in the fruit production. However, studies on pollen may be hard because gamete development and fertilization are complex processes that occur during a short window of time. The rise of the so-called -omics sciences provided key strategies to promote molecular research in pollen tissues, starting from model organisms and moving to increasing number of species. An integrated multi-level approach based on investigations from genomics, transcriptomics, proteomics and metabolomics appears now feasible to clarify key molecular processes in pollen development and viability. To this aim, bioinformatics has a fundamental role for data production and analysis, contributing varied and ad hoc methodologies, endowed with different sensitivity and specificity, necessary for extracting added-value information from the large amount of molecular data achievable. Bioinformatics is also essential for data management, organization, distribution and integration in suitable resources. This is necessary to catch the biological features of the pollen tissues and to design effective approaches to identifying structural or functional properties, enabling the modeling of the major involved processes in normal or in stress conditions. In this review, we provide an overview of the available bioinformatics resources for pollen, ranging from raw data collections to complete databases or platforms, when available, which include data and/or results from -omics efforts on the male gametophyte. Perspectives in the fields will also be described.


Subject(s)
Databases, Genetic , Genomics , Magnoliopsida/genetics , Pollen , Magnoliopsida/metabolism , Transcriptome
20.
Front Plant Sci ; 7: 664, 2016.
Article in English | MEDLINE | ID: mdl-27242865

ABSTRACT

Increased interest toward traditional tomato varieties is fueled by the need to rescue desirable organoleptic traits and to improve the quality of fresh and processed tomatoes in the market. In addition, the phenotypic and genetic variation preserved in tomato landraces represents a means to understand the genetic basis of traits related to health and organoleptic aspects and improve them in modern varieties. To establish a framework for this approach, we studied the content of several metabolites in a panel of Italian tomato landraces categorized into three broad fruit type classes (flattened/ribbed, pear/oxheart, round/elongate). Three modern hybrids, corresponding to the three fruit shape typologies, were included as reference. Red ripe fruits were morphologically characterized and biochemically analyzed for their content in glycoalkaloids, phenols, amino acids, and Amadori products. The round/elongate types showed a higher content in glycoalkaloids, whereas flattened types had higher levels of phenolic compounds. Flattened tomatoes were also rich in total amino acids and in particular in glutamic acid. Multivariate analysis of amino acid content clearly separated the three classes of fruit types. Making allowance of the very low number of genotypes, phenotype-marker relationships were analyzed after retrieving single nucleotide polymorphisms (SNPs) among the landraces available in the literature. Sixty-six markers were significantly associated with the studied traits. The positions of several of these SNPs showed correspondence with already described genomic regions and QTLs supporting the reliability of the association. Overall the data indicated that significant changes in quality-related metabolites occur depending on the genetic background in traditional tomato germplasm, frequently according to specific fruit shape categories. Such a variability is suitable to harness association mapping for metabolic quality traits using this germplasm as an experimental population, paving the way for investigating their genetic/molecular basis, and facilitating breeding for quality-related compounds in tomato fruits.

SELECTION OF CITATIONS
SEARCH DETAIL
...