Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Poult Sci ; 101(12): 102173, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36228528

ABSTRACT

Betaine is a well-known component of poultry diets with various effects on nutritional physiology. For example, increased water retention due to the osmolytic effect of betaine increases the volume of the cell, thereby accelerating the anabolic activity, integrity of cell membrane, and overall performance of the bird. Betaine is a multifunctional component (trimethyl derivative) acting as the most efficient methyl group donor and as an organic osmolyte, which can directly influence the gastrointestinal tract integrity, functionality, and health. So far, nothing is known about the effect of betaine on the intestinal barrier in chickens. In addition, little is known about comparing natural betaine with its synthetic form. Therefore, an animal study was conducted to ascertain the effects of betaine supplementation (natural and synthetic) on performance and intestinal physiological responses of broilers. One hundred and five 1-day-old broiler chicks were randomly assigned into 3 groups with 35 birds each: control, natural betaine (1 kg active natural (n)-betaine/ton of feed) and synthetic (syn)-betaine-HCL (1 kg active betaine /ton of feed). Histological assessment showed lower jejunal crypt depth and villi height/crypt depth ratio in syn-betaine-HCL group compared with natural n-betaine fed birds. Furthermore, it was found that syn-betaine-HCL negatively affects the integrity of the intestine by increasing the intestinal paracellular permeability in both jejunum and cecum as evidenced by a higher mannitol flux. Additionally, syn-betaine-HCl significantly upregulated the IFN-γ mRNA expression at certain time points, which could promote intestinal permeability, as it plays an important role in intestinal barrier dysfunction. Body weight (BW) and body weight gain (BWG) did not differ (P > 0.05) between the control birds and birds supplemented with syn-betaine-HCL. However, the BW and BWG were significantly (P < 0.05) improved by the dietary inclusion of n-betaine compared with other treatments. Altogether, the dietary inclusion of n-betaine had a positive effect on performance and did not negatively affect gut paracellular permeability. Furthermore, our results show that syn-betaine-HCl induces changes in the intestine, indicating an alteration of the intestinal histology and permeability. Thus, natural or synthetic betaine has different effects, which needs to be considered when using them as a feed supplement.


Subject(s)
Chickens , Intestinal Diseases , Animals , Chickens/physiology , Betaine/pharmacology , Animal Feed/analysis , Intestines , Diet/veterinary , Dietary Supplements , Intestinal Diseases/veterinary , Weight Gain , Body Weight , Animal Nutritional Physiological Phenomena
2.
Microb Pathog ; 168: 105509, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35367310

ABSTRACT

Toxins, antigens, and harmful pathogens continuously challenge the intestinal mucosa. Therefore, regulation of the intestinal barrier is crucial for the maintenance of mucosal homeostasis and gut health. Intercellular complexes, namely, tight junctions (TJs), regulate paracellular permeability. TJs are mainly composed of claudins (CLDN), occludin (OCLN), tight junction associated MARVEL-domain proteins (TAMPS), the scaffolding zonula occludens (ZO) proteins and junction-adhesion molecules (JAMs). Different studies have shown that a Campylobacter infection can lead to a phenomenon so-called "leaky gut", including the translocation of luminal bacteria to the underlying tissue and internal organs. Based on the effects of C. jejuni on the chicken gut, we hypothesize that impacts on TJ proteins play a crucial role in the destructive effects of the intestinal barrier. Likewise, the mycotoxin deoxynivalenol (DON) can also alter gut permeability in chickens. Albeit DON and C. jejuni are widely distributed, no data are available on their effect on the tight junctions' barrier in the broiler intestine and consequences for permeability. Therefore, the aim of this study was to analyze the interaction between DON and C. jejuni on the gut barrier by linking permeability with gene expression of TJ proteins and to determine the relationships between the measurements. Following oral infection of birds with C. jejuni NCTC 12744 at 14 days of age, we demonstrate that the co-exposure with DON has considerable consequences on gut permeability as well as on gut TJ mRNA expression. Co-exposure of DON and C. jejuni enhanced the negative effect on paracellular permeability of the intestine, which was also noticed for the bacteria or the mycotoxin alone by the Ussing chamber technique at certain time points in both jejunum and caecum. Furthermore, the increased paracellular permeability was associated with significant changes in TJ mRNA expression in the small and large intestine. The actual study demonstrates that co-exposure of broiler chickens to DON and C. jejuni resulted in a decreased barrier function via up-regulation of pore-forming tight junctions (CLDN7 and CLDN10), as well as the cytosolic TJ protein occludin (OCLN) that can shift to various paracellular locations and are therefore able to alter the epithelial permeability. These findings indicate that the co-exposure of broiler chickens to DON and C. jejuni affects the paracellular permeability of the gut by altering the tight junction proteins. Furthermore, analysing of correlations between TJs revealed that the mRNA expression levels of most tight junctions were correlated with each other in both jejunum and caecum. Finally, the findings indicate that the molecular composition of tight junctions can be used as a marker for gut health and integrity.


Subject(s)
Mycotoxins , Tight Junctions , Animals , Chickens/metabolism , Intestinal Mucosa/microbiology , Occludin/genetics , Occludin/metabolism , Permeability , RNA, Messenger/metabolism , Tight Junctions/metabolism
3.
Gut Pathog ; 13(1): 44, 2021 Jul 03.
Article in English | MEDLINE | ID: mdl-34217373

ABSTRACT

BACKGROUND: Intestinal epithelial cells are challenged by mycotoxins and many bacterial pathogens. It was previously shown that the mycotoxin deoxynivalenol (DON) as well as Campylobacter (C.) jejuni have a negative impact on gut integrity. Recently, it was demonstrated that DON increased the load of C. jejuni in the gut and inner organs. Based on this finding, it was hypothesized the DON metabolite (deepoxy-deoxynivalenol, DOM-1) should be able to reduce the negative effects of DON on colonization and translocation of C. jejuni in broilers, since it lacks the epoxide ring, which is responsible for the toxicity of DON. METHODS: A total of 180 broiler chickens were housed in floor pens on wood shavings with feed and water provided ad libitum. Birds were divided into six groups (n = 30 with 5 replicates/group): 1. Control, 2. DOM-1, 3. DON, 4. DOM-1 + C. jejuni, 5. DON + C. jejuni, 6. C. jejuni. At day 14, birds of groups 4, 5 and 6 were orally inoculated via feeding tube (gavage) with 1-ml of a PBS suspension containing 1 × 108 CFU of C. jejuni NCTC 12744. The performance parameters: body weight (BW), body weight gain (BWG), and feed intake of the birds were determined. At 7, 14, and 21 days post infection, samples from liver, spleen, duodenum, jejunum and cecum were aseptically collected and processed for bacteriological investigations. Finally, at each killing time point, segments of duodenum, jejunum and cecum were harvested and prepared for Ussing chamber studies to measure the paracellular mannitol fluxes. RESULTS: A significant decrease in body weight was observed for chickens receiving the DON diet with or without C. jejuni compared to the other groups. Furthermore, it was found that the co-exposure of birds to DON and C. jejuni resulted in a higher C. jejuni load not only in the gut but also in liver and spleen due to increased paracellular permeability of the duodenum, jejunum and cecum. On the contrary, DOM-1 supplementation in the feed improved the birds' performance and led to a better feed conversion ratio throughout the trial. Furthermore, DOM-1 did not negatively affect gut permeability and decreased the C. jejuni counts in the intestine and internal organs. CONCLUSION: Altogether, the presence of DOM-1 in the feed as a result of the enzymatic biotransformation of DON leads to a lower C. jejuni count in the intestine and better feed conversion ratio. Moreover, this study demonstrates that the detoxification product of DON, DOM-1, does not have negative effects on the gastrointestinal tract and reduces the Campylobacter burden in chickens and also the risk for human infection.

4.
Front Vet Sci ; 7: 573894, 2020.
Article in English | MEDLINE | ID: mdl-33363229

ABSTRACT

Deoxynivalenol (DON) is one of the major health concern in poultry production as it targets epithelial cells of the gastrointestinal tract and contributes to the loss of the epithelial barrier function. It is well-documented that DON severely compromises various important intestinal functions in coincidence with aggravated clinical symptoms in livestock. In addition, a prolonged persistence of intestinal pathogens (e.g., Salmonella, Clostridium) in the gut has also been reported in pigs and chickens, respectively. Similar to DON, recent studies demonstrated that an experimental Campylobacter infection has severe consequences on gut health. Through experimental infection, it was found that Campylobacter (C.) jejuni negatively affects the integrity of the intestine and promotes the translocation of bacteria from the gut to inner organs. So far, no data are available investigating the simultaneous exposure of DON and C. jejuni in broilers albeit both are widely distributed. Thus, the aim of the present study was to explore the interaction between DON and C. jejuni which is of a significant public and animal health concern as it may affect the prevalence and the ability to control this pathogen. Following oral infection of birds at 14 days of age with C. jejuni NCTC 12744, we show that the co-exposure to DON and C. jejuni has a considerable consequence on C. jejuni loads in chicken gut as well as on gut permeability of the birds. A reduced growth performance was found for DON and/or C. jejuni exposed birds. Furthermore, it was found that the co-exposure of DON and C. jejuni aggravated the negative effect on paracellular permeability of the intestine already noticed for the bacteria or the mycotoxin alone by the Ussing chamber technique at certain times or intestinal segments. Furthermore, the increased paracellular permeability promotes the translocation of C. jejuni and E. coli to inner organs, namely liver and spleen. Interestingly, C. jejuni loads in the intestine were higher in DON-fed groups indicating a supportive growth effect of the mycotoxin. The actual study demonstrates that co-exposure of broiler chickens to DON and C. jejuni has not only considerable consequences on gut integrity but also on bacterial balance. These findings indicate that the co-exposure of broiler chickens to DON and C. jejuni could have a significant impact on gut health and bacteria translocation leading to an increased risk for public health.

5.
Poult Sci ; 99(11): 5407-5414, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33142457

ABSTRACT

In recent years, several studies emphasize the deleterious effects of Campylobacter jejuni on the chicken intestine. In this context, it was shown that C. jejuni, contrary to the general belief, has a negative influence on the gut barrier in chickens. More precisely, we demonstrated that C. jejuni affects gut physiology characterized by changes in ion transport and transepithelial ion conductance, but the underlying mechanism is yet to be investigated. In the actual study, to determine epithelial paracellular permeability, the mucosal to serosal flux of 14C-mannitol in the small and large intestine was measured applying Ussing chamber. A total of seventy-five 1-day-old Ross 308 broiler chickens were housed in floor pens on wood shavings with feed and water provided ad libitum. Birds were randomly allocated to 3 different groups (n = 25 with 5 replicates/group) and infected at 14 d of age with a high (108 colony forming units [CFU]) or a low (104 CFU) dose of C. jejuni and a third group kept as noninfected control. Infection with the low dose of C. jejuni resulted in delayed cecal colonization but equalized at 21 d postinfection, independent of the dose. Invasion of liver and spleen with C. jejuni was only noticed in birds infected with 108 (CFU). Body weight (BW) and body weight gain of all birds infected with C. jejuni were lower than in the control group and varied with the dose of infection, confirming a negative correlation between the infection dose and birds BW. Mannitol flux in jejunum and cecum was significantly (P < 0.05) higher in all C. jejuni infected birds compared with control birds. Likewise, significant differences in mannitol flux of both jejunum and cecum were detected depending on the infection dose of C. jejuni. The correlation analyses revealed a positive relationship between Campylobacter dose and mannitol flux of both jejunum and cecum. Altogether, the actual results emphasize that the adverse effect of C. jejuni on gut permeability arises in a dose-dependent manner.


Subject(s)
Campylobacter Infections , Campylobacter jejuni , Poultry Diseases , Animals , Campylobacter Infections/immunology , Campylobacter Infections/veterinary , Cell Membrane Permeability/immunology , Chickens , Female , Intestinal Mucosa/cytology , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Male , Poultry Diseases/immunology , Poultry Diseases/microbiology
6.
Arch Toxicol ; 93(7): 2057-2064, 2019 07.
Article in English | MEDLINE | ID: mdl-31030221

ABSTRACT

In recent years, the deleterious effects attributed to mycotoxins, in particular on the intestine, faced increased attention and it was shown that deoxynivalenol (DON) causes adverse effects on gut health. In this context, it has been repeatedly reported that DON can alter the intestinal morphology, disrupt the intestinal barrier and reduce nutrient absorption. The underlying mechanism of a compromised intestinal barrier caused by DON in chickens has yet to be illustrated. Although, DON is rapidly absorbed from the upper parts of the small intestine, the effects on the large intestine cannot be excluded. Additionally, a damaging effect of DON on the gut epithelium might decrease the resistance of the gut against infectious agents. Consequently, the objectives of the present studies were: (1) to investigate the impact of DON on the epithelial paracellular permeability by demonstrating the mucosal to serosal flux of 14C-mannitol in the small and large intestine applying Ussing chambers and (2) to delineate the effects of DON on the colonization and translocation of Escherichia coli. Both parameters are well suited as potential indicators for gut barrier failure. For this, a total of 75 one-day-old Ross 308 broiler chickens were housed in floor pens on wood shavings with feed and water provided ad libitum. Birds were randomly allocated to three different groups (n = 25 with 5 replicates/group) and were fed for 5 weeks with either contaminated diets (5 or 10 mg DON/kg feed) or basal diets (control). Body weight (BW) and BW gain of birds in the group fed with 10 mg/kg DON were significantly lower than in group with 5 mg/kg DON and the control group. Moreover, the mannitol flux in jejunum and cecum was significantly (P < 0.05) higher in DON-fed groups compared to control birds. Consistent with this, DON enhanced the translocation of E. coli with a higher number of bacteria encountered in the spleen and liver. Altogether, the actual results verified that DON can alter the intestinal paracellular permeability in broiler chickens and facilitates the translocation of enteric microorganisms such as E. coli to extra-intestinal organs. Considering that moderate levels of DON are present in feed, the consumption of DON-contaminated feed can induce an intestinal breakdown with negative consequences on broiler health.


Subject(s)
Bacterial Translocation/drug effects , Cecum/drug effects , Chickens , Intestinal Absorption/drug effects , Intestinal Mucosa/drug effects , Jejunum/drug effects , Trichothecenes/toxicity , Animal Feed/standards , Animals , Body Weight/drug effects , Cecum/metabolism , Cecum/microbiology , Chickens/metabolism , Escherichia coli/isolation & purification , Female , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Jejunum/metabolism , Jejunum/microbiology , Male , Permeability
7.
Avian Dis ; 61(3): 335-340, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28957004

ABSTRACT

Recently we demonstrated that co-infection with Avibacterium paragallinarum and Gallibacterium anatis leads to increased severity of clinical signs of infectious coryza in birds. The present study examined the interaction of these two pathogens in chickens by evaluation of histologic lesions in sinus infraorbitalis and nasal turbinates, applying a defined scoring scheme ranging from 0 to 3. Furthermore, for the first time, an in situ hybridization (ISH) technique was applied to detect A. paragallinarum in tissues. The samples were received from vaccinated and nonvaccinated birds that were infected with A. paragallinarum and/or G. anatis. Vaccinated birds were mostly devoid of any histopathologic lesions except a few birds with lesion score 1 at 7 and 14 days postinfection (dpi). Likewise, nonvaccinated birds infected with G. anatis only did not present microscopic changes in the sinus infraorbitalis, except in a single bird at 7 dpi. Interestingly, median lesion scores caused by G. anatis infection were significantly higher in the nasal turbinates of infected birds than in negative control at 7 and 14 dpi. The most prominent histologic changes were recorded from sinus infraorbitalis and nasal turbinates of nonvaccinated birds that were infected either with A. paragallinarum only or together with G. anatis. ISH demonstrated positive signals for A. paragallinarum in exudates present in the lumen or attached to the epithelial layer of investigated tissues. Such signals were mainly detected in tissues from birds with the highest histopathologic lesion scores.


Subject(s)
Chickens , Coinfection/veterinary , Haemophilus Infections/veterinary , Pasteurellaceae Infections/veterinary , Poultry Diseases/pathology , Animals , Coinfection/microbiology , Coinfection/pathology , Haemophilus Infections/microbiology , Haemophilus Infections/pathology , Haemophilus paragallinarum/physiology , In Situ Hybridization , Paranasal Sinuses/microbiology , Pasteurellaceae/physiology , Pasteurellaceae Infections/microbiology , Pasteurellaceae Infections/pathology , Poultry Diseases/microbiology , Turbinates/microbiology , Vaccination/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL
...