Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Sci Rep ; 14(1): 12882, 2024 06 05.
Article in English | MEDLINE | ID: mdl-38839796

ABSTRACT

SARS-CoV2 infection results in a range of disease severities, but the underlying differential pathogenesis is still not completely understood. At presentation it remains difficult to estimate and predict severity, in particular, identify individuals at greatest risk of progression towards the most severe disease-states. Here we used advanced models with circulating serum analytes as variables in combination with daily assessment of disease severity using the SCODA-score, not only at single time points but also during the course of disease, to correlate analyte levels and disease severity. We identified a remarkably strong pro-inflammatory cytokine/chemokine profile with high levels for sCD163, CCL20, HGF, CHintinase3like1 and Pentraxin3 in serum which correlated with COVID-19 disease severity and overall outcome. Although precise analyte levels differed, resulting biomarker profiles were highly similar at early and late disease stages, and even during convalescence similar biomarkers were elevated and further included CXCL3, CXCL6 and Osteopontin. Taken together, strong pro-inflammatory marker profiles were identified in patients with COVID-19 disease which correlated with overall outcome and disease severity.


Subject(s)
Biomarkers , COVID-19 , Macrophage Activation , Severity of Illness Index , COVID-19/blood , COVID-19/immunology , Humans , Biomarkers/blood , Male , Female , Middle Aged , SARS-CoV-2/isolation & purification , Cytokines/blood , Cytokine Release Syndrome/blood , Adult , Aged , Serum Amyloid P-Component/metabolism , Serum Amyloid P-Component/analysis , C-Reactive Protein
2.
iScience ; 27(3): 109233, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38439958

ABSTRACT

HLA-E molecules can present self- and pathogen-derived peptides to both natural killer (NK) cells and T cells. T cells that recognize HLA-E peptides via their T cell receptor (TCR) are termed donor-unrestricted T cells due to restricted allelic variation of HLA-E. The composition and repertoire of HLA-E TCRs is not known so far. We performed TCR sequencing on CD8+ T cells from 21 individuals recognizing HLA-E tetramers (TMs) folded with two Mtb-HLA-E-restricted peptides. We sorted HLA-E Mtb TM+ and TM- CD8+ T cells directly ex vivo and performed bulk RNA-sequencing and single-cell TCR sequencing. The identified TCR repertoire was diverse and showed no conservation between and within individuals. TCRs selected from our single-cell TCR sequencing data could be activated upon HLA-E/peptide stimulation, although not robust, reflecting potentially weak interactions between HLA-E peptide complexes and TCRs. Thus, HLA-E-Mtb-specific T cells have a highly diverse TCR repertoire.

3.
Immunology ; 168(3): 526-537, 2023 03.
Article in English | MEDLINE | ID: mdl-36217755

ABSTRACT

There is growing interest in HLA-E-restricted T-cell responses as a possible novel, highly conserved, vaccination targets in the context of infectious and malignant diseases. The developing field of HLA multimers for the detection and study of peptide-specific T cells has allowed the in-depth study of TCR repertoires and molecular requirements for efficient antigen presentation and T-cell activation. In this study, we developed a method for efficient peptide thermal exchange on HLA-E monomers and multimers allowing the high-throughput production of HLA-E multimers. We optimized the thermal-mediated peptide exchange, and flow cytometry staining conditions for the detection of TCR and NKG2A/CD94 receptors, showing that this novel approach can be used for high-throughput identification and analysis of HLA-E-binding peptides which could be involved in T-cell and NK cell-mediated immune responses. Importantly, our analysis of NKG2A/CD94 interaction in the presence of modified peptides led to new molecular insights governing the interaction of HLA-E with this receptor. In particular, our results reveal that interactions of HLA-E with NKG2A/CD94 and the TCR involve different residues. Altogether, we present a novel HLA-E multimer technology based on thermal-mediated peptide exchange allowing us to investigate the molecular requirements for HLA-E/peptide interaction with its receptors.


Subject(s)
Histocompatibility Antigens Class I , Killer Cells, Natural , Protein Binding , Histocompatibility Antigens Class I/metabolism , Peptides , Receptors, Antigen, T-Cell , NK Cell Lectin-Like Receptor Subfamily D/chemistry , NK Cell Lectin-Like Receptor Subfamily D/metabolism , NK Cell Lectin-Like Receptor Subfamily C , HLA-E Antigens
4.
J Immunol ; 209(8): 1555-1565, 2022 10 15.
Article in English | MEDLINE | ID: mdl-36096642

ABSTRACT

Tuberculosis (TB) remains one of the deadliest infectious diseases worldwide, posing great social and economic burden to affected countries. Novel vaccine approaches are needed to increase protective immunity against the causative agent Mycobacterium tuberculosis (Mtb) and to reduce the development of active TB disease in latently infected individuals. Donor-unrestricted T cell responses represent such novel potential vaccine targets. HLA-E-restricted T cell responses have been shown to play an important role in protection against TB and other infections, and recent studies have demonstrated that these cells can be primed in vitro. However, the identification of novel pathogen-derived HLA-E binding peptides presented by infected target cells has been limited by the lack of accurate prediction algorithms for HLA-E binding. In this study, we developed an improved HLA-E binding peptide prediction algorithm and implemented it to identify (to our knowledge) novel Mtb-derived peptides with capacity to induce CD8+ T cell activation and that were recognized by specific HLA-E-restricted T cells in Mycobacterium-exposed humans. Altogether, we present a novel algorithm for the identification of pathogen- or self-derived HLA-E-presented peptides.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Antigens, Bacterial , CD8-Positive T-Lymphocytes , Epitopes, T-Lymphocyte , Histocompatibility Antigens Class I , Humans , Peptides , HLA-E Antigens
5.
J Virol ; 96(18): e0057422, 2022 09 28.
Article in English | MEDLINE | ID: mdl-36073921

ABSTRACT

Ebola virus disease (EVD) is a complex infectious disease characterized by high inflammation, multiorgan failure, the dysregulation of innate and adaptive immune responses, and coagulation abnormalities. Evidence accumulated over the last 2 decades indicates that, during fatal EVD, the infection of antigen-presenting cells (APC) and the dysregulation of T cell immunity preclude a successful transition between innate and adaptive immunity, which constitutes a key disease checkpoint. In order to better understand the contribution of the APC-T cell crosstalk to EVD pathophysiology, we have developed avatar mice transplanted with human, donor-specific APCs and T cells. Here, we show that the transplantation of T cells and APCs from Ebola virus (EBOV)-naive individuals into avatar mice results in severe disease and death and that this phenotype is dependent on T cell receptor (TCR)-major histocompatibility complex (MCH) recognition. Conversely, avatar mice were rescued from death induced by EBOV infection after the transplantation of both T cells and plasma from EVD survivors. These results strongly suggest that protection from EBOV reinfection requires both cellular and humoral immune memory responses. IMPORTANCE The crosstalk between dendritic cells and T cells marks the transition between innate and adaptive immune responses, and it constitutes an important checkpoint in EVD. In this study, we present a mouse avatar model in which T cell and dendritic cell interactions from a specific donor can be studied during EVD. Our findings indicate that T cell receptor-major histocompatibility complex-mediated T cell-dendritic cell interactions are associated with disease severity, which mimics the main features of severe EVD in these mice. Resistance to an EBOV challenge in the model was achieved via the transplantation of both survivor T cells and plasma.


Subject(s)
Cell Communication , Dendritic Cells , Ebolavirus , Hemorrhagic Fever, Ebola , Animals , Cell Communication/immunology , Dendritic Cells/immunology , Ebolavirus/immunology , Hemorrhagic Fever, Ebola/immunology , Hemorrhagic Fever, Ebola/physiopathology , Humans , Mice , Survivors , T-Lymphocytes/immunology , T-Lymphocytes/virology
6.
Methods Mol Biol ; 2574: 15-30, 2022.
Article in English | MEDLINE | ID: mdl-36087196

ABSTRACT

Understanding the interactions involved during the immunological synapse between peptide, HLA-E molecules, and TCR is crucial to effectively target protective HLA-E-restricted T-cell responses in humans. Here we describe three techniques based on the generation of MHC-E/peptide complexes (MHC-E generically includes HLA-E-like molecules in human and nonhuman species, while HLA-E specifically refers to human molecules), which allow to investigate MHC-E/peptide binding at the molecular level through binding assays and by using peptide loaded HLA-E tetramers, to detect, isolate, and study peptide-specific HLA-E-restricted human T-cells.


Subject(s)
Histocompatibility Antigens Class I , T-Lymphocytes , Epitopes , Histocompatibility Antigens Class I/metabolism , Humans , Peptides , HLA-E Antigens
7.
Trends Immunol ; 43(5): 355-365, 2022 05.
Article in English | MEDLINE | ID: mdl-35370095

ABSTRACT

The essentially monomorphic human antigen presentation molecule HLA-E is an interesting candidate target to enable vaccination irrespective of genetic diversity. Predictive HLA-E peptide-binding motifs have been refined to facilitate HLA-E peptide discovery. HLA-E can accommodate structurally divergent peptides of both self and microbial origin. Intracellular processing and presentation pathways for peptides by HLA-E for T cell receptor (TCR) recognition remain to be elucidated. Recent studies show that, unlike canonical peptides, inhibition of the transporter associated with antigen presentation (TAP) is essential to allow HLA-E antigen presentation in cytomegalovirus (CMV) infection and possibly also of other non-canonical peptides. We propose three alternative and TAP-independent MHC-E antigen-presentation pathways, including for Mycobacterium tuberculosis infections. These insights may help in designing potential HLA-E targeting vaccines against tumors and pathogens.


Subject(s)
Antigen Presentation , Tuberculosis , Histocompatibility Antigens Class I/metabolism , Humans , Membrane Transport Proteins , Peptides , Vaccination
8.
Immunol Rev ; 301(1): 30-47, 2021 05.
Article in English | MEDLINE | ID: mdl-33529407

ABSTRACT

Vaccination strategies against mycobacteria, focusing mostly on classical T- and B-cells, have shown limited success, encouraging the addition of alternative targets. Classically restricted T-cells recognize antigens presented via highly polymorphic HLA class Ia and class II molecules, while donor-unrestricted T-cells (DURTs), with few exceptions, recognize ligands via genetically conserved antigen presentation molecules. Consequently, DURTs can respond to the same ligands across diverse human populations. DURTs can be activated either through cognate TCR ligation or via bystander cytokine signaling. TCR-driven antigen-specific activation of DURTs occurs upon antigen presentation via non-polymorphic molecules such as HLA-E, CD1, MR1, and butyrophilin, leading to the activation of HLA-E-restricted T-cells, CD1-restricted T-cells, mucosal-associated invariant T-cells (MAITs), and TCRγδ T-cells, respectively. NK cells and innate lymphoid cells (ILCs), which lack rearranged TCRs, are activated through other receptor-triggering pathways, or can be engaged through bystander cytokines, produced, for example, by activated antigen-specific T-cells or phagocytes. NK cells can also develop trained immune memory and thus could represent cells of interest to mobilize by novel vaccines. In this review, we summarize the latest findings regarding the contributions of DURTs, NK cells, and ILCs in anti-M tuberculosis, M leprae, and non-tuberculous mycobacterial immunity and explore possible ways in which they could be harnessed through vaccines and immunotherapies to improve protection against Mtb.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Humans , Immunity, Innate , Killer Cells, Natural , Receptors, Antigen, T-Cell, gamma-delta
9.
Emerg Infect Dis ; 27(1): 76-84, 2021 01.
Article in English | MEDLINE | ID: mdl-33350932

ABSTRACT

We investigated the genetic profiles of killer cell immunoglobulin-like receptors (KIRs) in Ebola virus-infected patients. We studied the relationship between KIR-human leukocyte antigen (HLA) combinations and the clinical outcomes of patients with Ebola virus disease (EVD). We genotyped KIRs and HLA class I alleles using DNA from uninfected controls, EVD survivors, and persons who died of EVD. The activating 2DS4-003 and inhibitory 2DL5 genes were significantly more common among persons who died of EVD; 2DL2 was more common among survivors. We used logistic regression analysis and Bayesian modeling to identify 2DL2, 2DL5, 2DS4-003, HLA-B-Bw4-Thr, and HLA-B-Bw4-Ile as probably having a significant relationship with disease outcome. Our findings highlight the importance of innate immune response against Ebola virus and show the association between KIRs and the clinical outcome of EVD.


Subject(s)
Hemorrhagic Fever, Ebola , Alleles , Bayes Theorem , Genotype , HLA Antigens , Hemorrhagic Fever, Ebola/epidemiology , Humans , Receptors, KIR/genetics
10.
J Immunol ; 205(10): 2861-2872, 2020 11 15.
Article in English | MEDLINE | ID: mdl-33020145

ABSTRACT

Ag presentation via the nonclassical MHC class Ib molecule HLA-E, with nearly complete identity between the two alleles expressed in humans, HLA-E*01:01 and HLA-E*01:03, can lead to the activation of unconventional T cells in humans. Despite this virtual genetic monomorphism, differences in peptide repertoires binding to the two allelic variants have been reported. To further dissect and compare peptide binding to HLA-E*01:01 and HLA-E*01:03, we used an UV-mediated peptide exchange binding assay and an HPLC-based competition binding assay. In addition, we investigated binding of these same peptides to Mamu-E, the nonhuman primate homologue of human HLA-E, and to the HLA-E-like molecule Qa-1b in mice. We next exploited the differences and homologies in the peptide binding pockets of these four molecules to identify allele specific as well as common features of peptide binding motifs across species. Our results reveal differences in peptide binding preferences and intensities for each human HLA-E variant compared with Mamu-E and Qa-1b Using extended peptide libraries, we identified and refined the peptide binding motifs for each of the four molecules and found that they share main anchor positions, evidenced by conserved amino acid preferences across the four HLA-E molecules studied. In addition, we also identified differences in peptide binding motifs, which could explain the observed variations in peptide binding preferences and affinities for each of the four HLA-E-like molecules. Our results could help with guiding the selection of candidate pathogen-derived peptides with the capacity to target HLA-E-restricted T cells that could be mobilized in vaccination and immunotherapeutic strategies.


Subject(s)
Histocompatibility Antigens Class I/metabolism , Protein Binding/genetics , T-Lymphocytes/immunology , Alleles , Amino Acid Sequence/genetics , Animals , Antigens/immunology , Antigens/metabolism , Conserved Sequence/genetics , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/immunology , Humans , Macaca fascicularis , Mice , Peptides/immunology , Peptides/metabolism , Protein Binding/immunology , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Homology, Amino Acid , Species Specificity , T-Lymphocytes/metabolism , HLA-E Antigens
11.
Viruses ; 12(9)2020 08 20.
Article in English | MEDLINE | ID: mdl-32825479

ABSTRACT

The last seven years have seen the greatest surge of Ebola virus disease (EVD) cases in equatorial Africa, including the 2013-2016 epidemic in West Africa and the recent epidemics in the Democratic Republic of Congo (DRC). The vaccine clinical trials that took place in West Africa and the DRC, as well as follow-up studies in collaboration with EVD survivor communities, have for the first time allowed researchers to compare immune memory induced by natural infection and vaccination. These comparisons may be relevant to evaluate the putative effectiveness of vaccines and candidate medical countermeasures such as convalescent plasma transfer. In this study, we compared the long-term functionality of anti-EBOV glycoprotein (GP) antibodies from EVD survivors with that from volunteers who received the recombinant vesicular stomatitis virus vectored vaccine (rVSV-ZEBOV) during the Phase I clinical trial in Hamburg. Our study highlights important differences between EBOV vaccination and natural infection and provides a framework for comparison with other vaccine candidates.


Subject(s)
Antibodies, Viral/immunology , Ebola Vaccines/immunology , Ebolavirus/immunology , Hemorrhagic Fever, Ebola/immunology , Survivors , Adult , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Ebola Vaccines/administration & dosage , Female , Hemorrhagic Fever, Ebola/prevention & control , Hemorrhagic Fever, Ebola/virology , Humans , Immunoglobulins/blood , Immunoglobulins/immunology , Immunologic Memory , Male , Vaccination , Vesiculovirus/immunology , Viral Envelope Proteins/immunology , Viral Load
12.
JCI Insight ; 4(21)2019 11 01.
Article in English | MEDLINE | ID: mdl-31550241

ABSTRACT

Filoviruses of the genus Ebolavirus include 6 species with marked differences in their ability to cause disease in humans. From the highly virulent Ebola virus to the seemingly nonpathogenic Reston virus, case fatality rates can range between 0% and 90%. In order to understand the molecular basis of these differences, it is imperative to establish disease models that recapitulate human disease as faithfully as possible. Nonhuman primates (NHPs) are the gold-standard models for filovirus pathogenesis, but comparative studies are skewed by the fact that Reston virus infection can be lethal for NHPs. Here we used HLA-A2-transgenic, NOD-scid-IL-2γ receptor-knockout (NSG-A2) mice reconstituted with human hematopoiesis to compare Ebola virus and Reston virus pathogenesis in a human-like environment. While markedly less pathogenic than Ebola virus, Reston virus killed 20% of infected mice, a finding that was linked to exacerbated inflammation and viral replication in the liver. In addition, the case fatality ratios of different Ebolavirus species in humans were recapitulated in the humanized mice. Our findings point to humanized mice as a putative model to test the pathogenicity of newly discovered filoviruses, and suggest that further investigations on Reston virus pathogenesis in humans are warranted.


Subject(s)
Hemorrhagic Fever, Ebola/pathology , Animals , Disease Models, Animal , Ebolavirus/pathogenicity , Ebolavirus/physiology , Hemorrhagic Fever, Ebola/virology , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Mucous Membrane/virology , Viral Load , Virus Replication
13.
J Infect Dis ; 218(suppl_5): S508-S518, 2018 11 22.
Article in English | MEDLINE | ID: mdl-29986035

ABSTRACT

Differences in T-cell phenotype, particularly the expression of markers of T-cell homeostasis, have been observed in fatal and nonfatal Ebola virus disease (EVD). However, the relationship between these markers with T-cell function and virus clearance during EVD is poorly understood. To gain biological insight into the role of T cells during EVD, combined transcriptomics and T-cell receptor sequencing was used to profile blood samples from fatal and nonfatal EVD patients from the recent West African EVD epidemic. Fatal EVD was characterized by strong T-cell activation and increased abundance of T-cell inhibitory molecules. However, the early T-cell response was oligoclonal and did not result in viral clearance. In contrast, survivors mounted highly diverse T-cell responses, maintained low levels of T-cell inhibitors, and cleared Ebola virus. Our findings highlight the importance of T-cell immunity in surviving EVD and strengthen the foundation for further research on targeting of the dendritic cell-T cell interface for postexposure immunotherapy.


Subject(s)
Hemorrhagic Fever, Ebola/immunology , Homeostasis , Receptors, Antigen, T-Cell/physiology , T-Lymphocytes/immunology , Biomarkers , Cross-Sectional Studies , Hemorrhagic Fever, Ebola/genetics , Hemorrhagic Fever, Ebola/mortality , Humans , Transcriptome
14.
J Virol ; 92(11)2018 06 01.
Article in English | MEDLINE | ID: mdl-29540592

ABSTRACT

During hepatitis B virus (HBV) infections, subviral particles (SVP) consisting only of viral envelope proteins and lipids are secreted. Heterologous expression of the small envelope protein S in mammalian cells is sufficient for SVP generation. S is synthesized as a transmembrane protein with N-terminal (TM1), central (TM2), and hydrophobic C-terminal (HCR) transmembrane domains. The loops between TM1 and TM2 (the cytosolic loop [CL]) and between TM2 and the HCR (the luminal loop [LL]) are located in the cytosol and the endoplasmic reticulum (ER) lumen, respectively. To define the domains of S mediating oligomerization during SVP morphogenesis, S mutants were characterized by expression in transiently transfected cells. Mutation of 12 out of 15 amino acids of TM1 to alanines, as well as the deletion of HCR, still allowed SVP formation, demonstrating that these two domains are not essential for contacts between S proteins. Furthermore, the oligomerization of S was measured with a fluorescence-activated cell sorter (FACS)-based Förster resonance energy transfer (FRET) assay. This approach demonstrated that the CL, TM2, and the LL independently contributed to S oligomerization, while TM1 and the HCR played minor roles. Apparently, intermolecular homo-oligomerization of the CL, TM2, and the LL drives S protein aggregation. Detailed analyses revealed that the point mutation C65S in the CL, the mutation of 13 out of 19 amino acids of TM2 to alanine residues, and the simultaneous replacement of all 8 cysteine residues in the LL by serine residues blocked the abilities of these domains to support S protein interactions. Altogether, specific domains and residues in the HBV S protein that are required for oligomerization and SVP generation were defined.IMPORTANCE The small hepatitis B virus envelope protein S has the intrinsic ability to direct the morphogenesis of spherical 20-nm subviral lipoprotein particles. Such particles expressed in yeast or mammalian cells represent the antigenic component of current hepatitis B vaccines. Our knowledge about the steps leading from the initial, monomeric, transmembrane translation product of S to SVP is very limited, as is our information on the structure of the complex main epitope of SVP that induces the formation of protective antibodies after vaccination. This study contributes to our understanding of the oligomerization process of S chains during SVP formation and shows that the cytoplasmic loop, one membrane-embedded domain, and the luminal loop of S independently drive S-S oligomerization.


Subject(s)
Hepatitis B Surface Antigens/metabolism , Protein Domains/genetics , Protein Multimerization/genetics , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism , Amino Acid Sequence , Cell Line, Tumor , Hepatitis B/pathology , Hepatitis B/virology , Hepatitis B virus/metabolism , Humans , Sequence Deletion/genetics , Virus Assembly/genetics
15.
PLoS Negl Trop Dis ; 11(5): e0005645, 2017 May.
Article in English | MEDLINE | ID: mdl-28558022

ABSTRACT

BACKGROUND: Human Ebola infection is characterized by a paralysis of the immune system. A signature of αß T cells in fatal Ebola infection has been recently proposed, while the involvement of innate immune cells in the protection/pathogenesis of Ebola infection is unknown. Aim of this study was to analyze γδ T and NK cells in patients from the Ebola outbreak of 2014-2015 occurred in West Africa, and to assess their association with the clinical outcome. METHODOLOGY/PRINCIPAL FINDINGS: Nineteen Ebola-infected patients were enrolled at the time of admission to the Ebola Treatment Centre in Guinea. Patients were divided in two groups on the basis of the clinical outcome. The analysis was performed by using multiparametric flow cytometry established by the European Mobile Laboratory in the field. A low frequency of Vδ2 T-cells was observed during Ebola infection, independently from the clinical outcome. Moreover, Vδ2 T-cells from Ebola patients massively expressed CD95 apoptotic marker, suggesting the involvement of apoptotic mechanisms in Vδ2 T-cell loss. Interestingly, Vδ2 T-cells from survivors expressed an effector phenotype and presented a lower expression of the CTLA-4 exhaustion marker than fatalities, suggesting a role of effector Vδ2 T-cells in the protection. Furthermore, patients with fatal Ebola infection were characterized by a lower NK cell frequency than patients with non fatal infection. In particular, both CD56bright and CD56dim NK frequency were very low both in fatal and non fatal infections, while a higher frequency of CD56neg NK cells was associated to non-fatal infections. Finally, NK activation and expression of NKp46 and CD158a were independent from clinical outcome. CONCLUSIONS/SIGNIFICANCES: Altogether, the data suggest that both effector Vδ2 T-cells and NK cells may play a role in the complex network of protective response to EBOV infection. Further studies are required to characterize the protective effector functions of Vδ2 and NK cells.


Subject(s)
Hemorrhagic Fever, Ebola/immunology , Hemorrhagic Fever, Ebola/mortality , Killer Cells, Natural/immunology , Receptors, Antigen, T-Cell, gamma-delta/immunology , T-Lymphocyte Subsets/immunology , Biomarkers/metabolism , CD56 Antigen/metabolism , CTLA-4 Antigen/metabolism , Databases, Factual , Ebolavirus , Female , Flow Cytometry , Guinea/epidemiology , Humans , Lymphocyte Activation/immunology , Male , Natural Cytotoxicity Triggering Receptor 1/metabolism , Receptors, KIR2DL1/metabolism , Viral Load , fas Receptor/metabolism
16.
Sci Rep ; 7: 43776, 2017 03 03.
Article in English | MEDLINE | ID: mdl-28256637

ABSTRACT

Ebola virus (EBOV) causes severe systemic disease in humans and non-human primates characterized by high levels of viremia and virus titers in peripheral organs. The natural portals of virus entry are the mucosal surfaces and the skin where macrophages and dendritic cells (DCs) are primary EBOV targets. Due to the migratory properties of DCs, EBOV infection of these cells has been proposed as a necessary step for virus dissemination via draining lymph nodes and blood. Here we utilize chimeric mice with competent hematopoietic-driven immunity, to show that EBOV primarily infects CD11b+ DCs in non-lymphoid and lymphoid tissues, but spares the main cross-presenting CD103+ DC subset. Furthermore, depletion of CD8 and CD4 T cells resulted in loss of early control of virus replication, viremia and fatal Ebola virus disease (EVD). Thus, our findings point out at T cell function as a key determinant of EVD progress and outcome.


Subject(s)
Ebolavirus/immunology , Hemorrhagic Fever, Ebola/immunology , T-Lymphocytes/immunology , Virus Replication/immunology , Animals , Antigens, CD/immunology , Antigens, CD/metabolism , CD11b Antigen/immunology , CD11b Antigen/metabolism , Cross-Priming/immunology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Dendritic Cells/virology , Ebolavirus/physiology , Hemorrhagic Fever, Ebola/virology , Host-Pathogen Interactions/immunology , Integrin alpha Chains/immunology , Integrin alpha Chains/metabolism , Kinetics , Lymphoid Tissue/immunology , Lymphoid Tissue/metabolism , Lymphoid Tissue/virology , Mice, Inbred C57BL , Mice, Knockout , Viremia/immunology , Viremia/virology
17.
Eur J Immunol ; 47(2): 345-352, 2017 02.
Article in English | MEDLINE | ID: mdl-27859043

ABSTRACT

Influenza virus infection triggers an increase in the number of monocyte-derived dendritic cells (moDCs) in the respiratory tract, but the role of these cells during antiviral immunity is still unclear. Here we show that during influenza infection, moDCs dominate the late activation of CD8+ T cells and trigger the switch in immunodominance of the CD8+ T-cell response from acidic polymerase specificity to nucleoprotein specificity. Abrogation of monocyte recruitment or depletion of moDCs strongly compromised host resistance to secondary influenza challenge. These findings underscore a novel function of moDCs in the antiviral response to influenza virus, and have important implications for vaccine design.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Dendritic Cells/immunology , Influenza A Virus, H1N1 Subtype/immunology , Lung/immunology , Monocytes/immunology , Orthomyxoviridae Infections/immunology , T-Cell Antigen Receptor Specificity , Animals , Cells, Cultured , Dendritic Cells/virology , Immunodominant Epitopes/immunology , Immunologic Memory , Lung/virology , Lymphocyte Activation , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Viral Core Proteins/immunology
18.
Sci Rep ; 6: 37258, 2016 11 16.
Article in English | MEDLINE | ID: mdl-27849047

ABSTRACT

The matrix protein of Ebola virus (EBOV) VP40 regulates viral budding, nucleocapsid recruitment, virus structure and stability, viral genome replication and transcription, and has an intrinsic ability to form virus-like particles. The elucidation of the regulation of VP40 functions is essential to identify mechanisms to inhibit viral replication and spread. Post-translational modifications of proteins with ubiquitin-like family members are common mechanisms for the regulation of host and virus multifunctional proteins. Thus far, no SUMOylation of VP40 has been described. Here we demonstrate that VP40 is modified by SUMO and that SUMO is included into the viral like particles (VLPs). We demonstrate that lysine residue 326 in VP40 is involved in SUMOylation, and by analyzing a mutant in this residue we show that SUMO conjugation regulates the stability of VP40 and the incorporation of SUMO into the VLPs. Our study indicates for the first time, to the best of our knowledge, that EBOV hijacks the cellular SUMOylation system in order to modify its own proteins. Modulation of the VP40-SUMO interaction may represent a novel target for the therapy of Ebola virus infection.


Subject(s)
Ebolavirus/metabolism , Lysine/metabolism , Nucleoproteins/metabolism , Sumoylation , Viral Core Proteins/metabolism , Animals , Chlorocebus aethiops , Ebolavirus/genetics , HEK293 Cells , Hemorrhagic Fever, Ebola/virology , Host-Pathogen Interactions , Humans , Lysine/genetics , Microscopy, Electron , Mutation , Nucleoproteins/genetics , Vero Cells , Viral Core Proteins/genetics , Virion/genetics , Virion/metabolism , Virion/ultrastructure
19.
J Infect Dis ; 214(suppl 3): S275-S280, 2016 10 15.
Article in English | MEDLINE | ID: mdl-27521367

ABSTRACT

A number of previous studies have identified antigen-presenting cells (APCs) as key targets of Ebola virus (EBOV), but the role of APCs in human Ebola virus disease (EVD) is not known. We have evaluated the phenotype and kinetics of monocytes, neutrophils, and dendritic cells (DCs) in peripheral blood of patients for whom EVD was diagnosed by the European Mobile Laboratory in Guinea. Acute EVD was characterized by reduced levels of circulating nonclassical CD16+ monocytes with a poor activation profile. In survivors, CD16+ monocytes were activated during recovery, coincident with viral clearance, suggesting an important role of this cell subset in EVD pathophysiology.


Subject(s)
Dendritic Cells/immunology , Ebolavirus/immunology , Hemorrhagic Fever, Ebola/immunology , Monocytes/immunology , Neutrophils/immunology , Receptors, IgG/immunology , Dendritic Cells/virology , Ebolavirus/isolation & purification , Female , Hemorrhagic Fever, Ebola/diagnosis , Hemorrhagic Fever, Ebola/physiopathology , Hemorrhagic Fever, Ebola/virology , Humans , Kinetics , Mobile Health Units , Monocytes/virology , Neutrophils/virology , Phenotype
20.
PLoS Pathog ; 12(5): e1005656, 2016 05.
Article in English | MEDLINE | ID: mdl-27191716

ABSTRACT

Lassa fever (LASF) is a highly severe viral syndrome endemic to West African countries. Despite the annual high morbidity and mortality caused by LASF, very little is known about the pathophysiology of the disease. Basic research on LASF has been precluded due to the lack of relevant small animal models that reproduce the human disease. Immunocompetent laboratory mice are resistant to infection with Lassa virus (LASV) and, to date, only immunodeficient mice, or mice expressing human HLA, have shown some degree of susceptibility to experimental infection. Here, transplantation of wild-type bone marrow cells into irradiated type I interferon receptor knockout mice (IFNAR-/-) was used to generate chimeric mice that reproduced important features of severe LASF in humans. This included high lethality, liver damage, vascular leakage and systemic virus dissemination. In addition, this model indicated that T cell-mediated immunopathology was an important component of LASF pathogenesis that was directly correlated with vascular leakage. Our strategy allows easy generation of a suitable small animal model to test new vaccines and antivirals and to dissect the basic components of LASF pathophysiology.


Subject(s)
Disease Models, Animal , Lassa Fever/immunology , Lassa Fever/pathology , Animals , Flow Cytometry , Immunohistochemistry , Mice , Mice, Inbred C57BL , Mice, Knockout , Radiation Chimera
SELECTION OF CITATIONS
SEARCH DETAIL
...