Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Electrocardiol ; 66: 69-76, 2021.
Article in English | MEDLINE | ID: mdl-33794386

ABSTRACT

INTRODUCTION: Longitudinal monitoring of sometimes subtle waveform changes of the 12­lead electrocardiogram (ECG) is complicated by patient-specific and technical factors, such as the inaccuracy of electrode repositioning. This feasibility study uses a 3D camera to reduce electrode repositioning errors, reduce ECG waveform variability and enable detailed longitudinal ECG monitoring. METHODS: Per subject, three clinical ECGs were obtained during routine clinical follow-up. Additionally, two ECGs were recorded guided by two 3D cameras, which were used to capture the precordial electrode locations and direct electrode repositioning. ECG waveforms and parameters were quantitatively compared between 3D camera guided ECGs and clinical ECGs. Euclidian distances between original and repositioned precordial electrodes from 3D guided ECGs were measured. RESULTS: Twenty subjects (mean age 65.1 ± 8.2 years, 35% females) were included. The ECG waveform variation between routine ECGs was significantly higher compared to 3D guided ECGs, for both the QRS complex (correlation coefficient = 0.90 vs 0.98, p < 0.001) and the STT segment (correlation coefficient = 0.88 vs. 0.96, p < 0.001). QTc interval variation was reduced for 3D camera guided ECGs compared to routine clinical ECGs (5.6 ms vs. 9.6 ms, p = 0.030). The median distance between 3D guided repositioned electrodes was 10.0 [6.4-15.2] mm, and did differ between males and females (p = 0.076). CONCLUSIONS: 3D guided repositioning of precordial electrodes resulted in, a low repositioning error, higher agreement between waveforms of consecutive ECGs and a reduction of QTc variation. These findings suggest that longitudinal monitoring of disease progression using 12­lead ECG waveforms is feasible in clinical practice.


Subject(s)
Drug Repositioning , Electrocardiography , Aged , Electrodes , Feasibility Studies , Female , Humans , Male , Middle Aged
2.
Clin Neurophysiol ; 132(2): 323-331, 2021 02.
Article in English | MEDLINE | ID: mdl-33450554

ABSTRACT

OBJECTIVE: To investigate the impact of stimulus duration on motor unit (MU) thresholds and alternation within compound muscle action potential (CMAP) scans. METHODS: The stimulus duration (0.1, 0.2, 0.6, and 1.0 ms) in thenar CMAP scans and individual MUs of 14 healthy subjects was systematically varied. We quantified variability of individual MU's thresholds by relative spread (RS), MU thresholds by stimulus currents required to elicit target CMAPs of 5% (S5), 50% (S50) and 95% (S95) of the maximum CMAP, and relative range (RR) by 100*[S95-S5]/S50. We further assessed the strength-duration time constant (SDTC). Experimental observations were subsequently simulated to quantify alternation. RESULTS: RS, unaffected by stimulus duration, was 1.65% averaged over all recordings. RR increased for longer stimulus duration (11.4% per ms, p < 0.001). SDTC shortened with higher target CMAPs (0.007 ms per 10% CMAP, p < 0.001). Experiments and simulations supported that this may underlie the increased RR. A short compared to long stimulus duration recruited relative more MUs at S50 (more alternation) than at the tails (less alternation). CONCLUSIONS: The stimulus duration significantly affects MU threshold distribution and alternation within CMAP scans. SIGNIFICANCE: Stimulation settings can be further optimized and their standardization is preferred when using CMAP scans for monitoring neuromuscular diseases.


Subject(s)
Action Potentials , Muscle Fibers, Skeletal/physiology , Transcutaneous Electric Nerve Stimulation/methods , Adult , Electromyography/methods , Female , Humans , Male , Middle Aged , Muscle Contraction , Time
SELECTION OF CITATIONS
SEARCH DETAIL
...