Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 201
Filter
1.
Angew Chem Int Ed Engl ; : e202405905, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771269

ABSTRACT

The replacement of a CC unit with an isoelectronic BN unit in aromatic systems can give rise to molecules and materials with fascinating properties. We report here the synthesis, characterization, and reactivity of a 1,4,2,3-diazadiborole species, 2, featuring an unprecedented 6π-aromatic BN-heterocyclic moiety that is isoelectronic to cyclopentadienide (Cp-). Bearing an unsymmetrical B=B entity, 2 exhibits reactivity toward oxidants, protic reagents, electrophiles, and unsaturated substrates. This reactivity facilitates the synthesis of a variety of novel mono- and bicyclic organoboron derivatives through mechanisms including ring retention, cleavage/recombination, annulation, and expansion. These findings reveal innovative synthetic routes to BN-embedded aromatic compounds via desymmetrization, affording unique building blocks for synthetic chemistry.

2.
Article in English | MEDLINE | ID: mdl-38428671

ABSTRACT

OBJECTIVE: Registry data suggest that centralising abdominal aortic aneurysm (AAA) surgery decreases the mortality rate after AAA repair. However, the impact of higher elective volumes on ruptured AAA (rAAA) repair associated mortality rates remains uncertain. This study aimed to examine associations between intact AAA (iAAA) repair volume and post-operative rAAA death. METHODS: Using data from official national registries between 2015 - 2019, all iAAA and rAAA repairs were separately analysed across 10 public hospitals. The following were assessed: 30 day and 12 month mortality rate following open surgical repair (OSR) and endovascular aneurysm repair (EVAR). Associations between the 5 year hospital iAAA repair volumes (organised into tertiles) and rAAA associated mortality rate were analysed, regardless of treatment modality. Receiver operating characteristic (ROC) curves were generated to identify iAAA volume thresholds for decreasing the rAAA mortality rate. Subanalysis by treatment type was conducted. Threshold analysis was repeated with the Markov chain Monte Carlo (MCMC) procedure to confirm the findings. RESULTS: A total of 1 599 iAAAs (80.2% EVAR, 19.8% OSR) and 196 rAAAs (66.3% EVAR, 33.7% OSR) repairs were analysed. The median and interquartile range of the volume/hospital/year for all iAAA repairs were 39.2 (31.2, 47.4). The top volume iAAA tertile exhibited lower rAAA associated 30 day (odds ratio [OR] 0.374; p = .007) and 12 month (OR 0.264; p < .001) mortality rates. The ROC analysis revealed a threshold of 40 iAAA repairs/hospital/year (EVAR + OSR) for a reduced rAAA mortality rate. Middle volume hospitals for open iAAA repair had reduced 30 day (OR 0.267; p = .033) and 12 month (OR 0.223; p = .020) mortality rates, with a threshold of five OSR procedures/year. The MCMC procedure found similar thresholds. No significant association was found between elective EVAR volumes and ruptured EVAR mortality. CONCLUSION: Higher iAAA repair volumes correlated with a lower rAAA mortality rate, particularly for OSR. The recommended iAAA repair threshold is 40 procedures/year and five procedures/year for OSR. These findings support high elective volumes for improving the rAAA mortality rate, especially for OSR.

3.
JMIR Form Res ; 8: e33868, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38498019

ABSTRACT

BACKGROUND: Advances in health have highlighted the need to implement technologies as a fundamental part of the diagnosis, treatment, and recovery of patients at risk of or with health alterations. For this purpose, digital platforms have demonstrated their applicability in the identification of care needs. Nursing is a fundamental component in the care of patients with cardiovascular disorders and plays a crucial role in diagnosing human responses to these health conditions. Consequently, the validation of nursing diagnoses through ongoing research processes has become a necessity that can significantly impact both patients and health care professionals. OBJECTIVE: We aimed to describe the process of developing a mobile app to validate the nursing diagnosis "intolerance to physical activity" in patients with acute myocardial infarction. METHODS: We describe the development and pilot-testing of a mobile system to support data collection for validating the nursing diagnosis of activity intolerance. This was a descriptive study conducted with 11 adults (aged ≥18 years) who attended a health institution for highly complex needs with a suspected diagnosis of coronary syndrome between August and September 2019 in Floridablanca, Colombia. An app for the clinical validation of activity intolerance (North American Nursing Diagnosis Association [NANDA] code 00092) in patients with acute coronary syndrome was developed in two steps: (1) operationalization of the nursing diagnosis and (2) the app development process, which included an evaluation of the initial requirements, development and digitization of the forms, and a pilot test. The agreement level between the 2 evaluating nurses was evaluated with the κ index. RESULTS: We developed a form that included sociodemographic data, hospital admission data, medical history, current pharmacological treatment, and thrombolysis in myocardial infarction risk score (TIMI-RS) and GRACE (Global Registry of Acute Coronary Events) scores. To identify the defining characteristics, we included official guidelines, physiological measurements, and scales such as the Piper fatigue scale and Borg scale. Participants in the pilot test (n=11) had an average age of 63.2 (SD 4.0) years and were 82% (9/11) men; 18% (2/11) had incomplete primary schooling. The agreement between the evaluators was approximately 80% for most of the defining characteristics. The most prevalent characteristics were exercise discomfort (10/11, 91%), weakness (7/11, 64%), dyspnea (3/11, 27%), abnormal heart rate in response to exercise (2/10, 20%), electrocardiogram abnormalities (1/10, 9%), and abnormal blood pressure in response to activity (1/10, 10%). CONCLUSIONS: We developed a mobile app for validating the diagnosis of "activity intolerance." Its use will guarantee not only optimal data collection, minimizing errors to perform validation, but will also allow the identification of individual care needs.

4.
Plant Cell Environ ; 47(5): 1747-1768, 2024 May.
Article in English | MEDLINE | ID: mdl-38317308

ABSTRACT

The plant cell wall is a plastic structure of variable composition that constitutes the first line of defence against environmental challenges. Lodging and drought are two stressful conditions that severely impact maize yield. In a previous work, we characterised the cell walls of two maize inbreds, EA2024 (susceptible) and B73 (resistant) to stalk lodging. Here, we show that drought induces distinct phenotypical, physiological, cell wall, and transcriptional changes in the two inbreds, with B73 exhibiting lower tolerance to this stress than EA2024. In control conditions, EA2024 stalks had higher levels of cellulose, uronic acids and p-coumarate than B73. However, upon drought EA2024 displayed increased levels of arabinose-enriched polymers, such as pectin-arabinans and arabinogalactan proteins, and a decreased lignin content. By contrast, B73 displayed a deeper rearrangement of cell walls upon drought, including modifications in lignin composition (increased S subunits and S/G ratio; decreased H subunits) and an increase of uronic acids. Drought induced more substantial changes in gene expression in B73 compared to EA2024, particularly in cell wall-related genes, that were modulated in an inbred-specific manner. Transcription factor enrichment assays unveiled inbred-specific regulatory networks coordinating cell wall genes expression. Altogether, these findings reveal that B73 and EA2024 inbreds, with opposite stalk-lodging phenotypes, undertake different cell wall modification strategies in response to drought. We propose that the specific cell wall composition conferring lodging resistance to B73, compromises its cell wall plasticity, and renders this inbred more susceptible to drought.


Subject(s)
Lignin , Zea mays , Lignin/metabolism , Zea mays/physiology , Droughts , Cell Wall/metabolism , Uronic Acids/metabolism
6.
Nat Mater ; 23(4): 499-505, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38321241

ABSTRACT

Compressing light into nanocavities substantially enhances light-matter interactions, which has been a major driver for nanostructured materials research. However, extreme confinement generally comes at the cost of absorption and low resonator quality factors. Here we suggest an alternative optical multimodal confinement mechanism, unlocking the potential of hyperbolic phonon polaritons in isotopically pure hexagonal boron nitride. We produce deep-subwavelength cavities and demonstrate several orders of magnitude improvement in confinement, with estimated Purcell factors exceeding 108 and quality factors in the 50-480 range, values approaching the intrinsic quality factor of hexagonal boron nitride polaritons. Intriguingly, the quality factors we obtain exceed the maximum predicted by impedance-mismatch considerations, indicating that confinement is boosted by higher-order modes. We expect that our multimodal approach to nanoscale polariton manipulation will have far-reaching implications for ultrastrong light-matter interactions, mid-infrared nonlinear optics and nanoscale sensors.

7.
J Dairy Sci ; 107(2): 857-869, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37709037

ABSTRACT

This study aimed to investigate the effect of administering a standardized blend of cinnamaldehyde, eugenol, and Capsicum oleoresin (CEC) to lactating dairy cattle for 84 d (i.e., 12 wk) on enteric CH4 emission, feed intake, milk yield and composition, and body weight. The experiment involved 56 Holstein-Friesian dairy cows (145 ± 31.1 d in milk at the start of the trial; mean ± standard deviation) in a randomized complete block design. Cows were blocked in pairs according to parity, lactation stage, and current milk yield, and randomly allocated to 1 of the 2 dietary treatments: a diet including 54.5 mg of CEC/kg of DM or a control diet without CEC. Diets were provided as partial mixed rations in feed bins, which automatically recorded individual feed intake. Additional concentrate was fed in the GreenFeed system that was used to measure emissions of CO2, CH4, and H2. Feeding CEC decreased CH4 yield (g/kg DMI) by on average 3.4% over the complete 12-wk period and by on average 3.9% from 6 wk after the start of supplementation onward. Feeding CEC simultaneously increased feed intake and body weight, and tended to increase milk protein content, whereas no negative responses were observed. These results must be further investigated and confirmed in longer-term in vivo experiments.


Subject(s)
Acrolein/analogs & derivatives , Capsicum , Lactation , Plant Extracts , Female , Pregnancy , Cattle , Animals , Lactation/physiology , Eugenol/pharmacology , Eugenol/metabolism , Capsicum/metabolism , Methane/metabolism , Diet/veterinary , Body Weight , Rumen/metabolism
8.
Sci Rep ; 13(1): 21305, 2023 12 02.
Article in English | MEDLINE | ID: mdl-38042941

ABSTRACT

Methane (CH4) emissions from ruminants are of a significant environmental concern, necessitating accurate prediction for emission inventories. Existing models rely solely on dietary and host animal-related data, ignoring the predicting power of rumen microbiota, the source of CH4. To address this limitation, we developed novel CH4 prediction models incorporating rumen microbes as predictors, alongside animal- and feed-related predictors using four statistical/machine learning (ML) methods. These include random forest combined with boosting (RF-B), least absolute shrinkage and selection operator (LASSO), generalized linear mixed model with LASSO (glmmLasso), and smoothly clipped absolute deviation (SCAD) implemented on linear mixed models. With a sheep dataset (218 observations) of both animal data and rumen microbiota data (relative sequence abundance of 330 genera of rumen bacteria, archaea, protozoa, and fungi), we developed linear mixed models to predict CH4 production (g CH4/animal·d, ANIM-B models) and CH4 yield (g CH4/kg of dry matter intake, DMI-B models). We also developed models solely based on animal-related data. Prediction performance was evaluated 200 times with random data splits, while fitting performance was assessed without data splitting. The inclusion of microbial predictors improved the models, as indicated by decreased root mean square prediction error (RMSPE) and mean absolute error (MAE), and increased Lin's concordance correlation coefficient (CCC). Both glmmLasso and SCAD reduced the Akaike information criterion (AIC) and Bayesian information criterion (BIC) for both the ANIM-B and the DMI-B models, while the other two ML methods had mixed outcomes. By balancing prediction performance and fitting performance, we obtained one ANIM-B model (containing 10 genera of bacteria and 3 animal data) fitted using glmmLasso and one DMI-B model (5 genera of bacteria and 1 animal datum) fitted using SCAD. This study highlights the importance of incorporating rumen microbiota data in CH4 prediction models to enhance accuracy and robustness. Additionally, ML methods facilitate the selection of microbial predictors from high-dimensional metataxonomic data of the rumen microbiota without overfitting. Moreover, the identified microbial predictors can serve as biomarkers of CH4 emissions from sheep, providing valuable insights for future research and mitigation strategies.


Subject(s)
Methane , Rumen , Sheep , Animals , Female , Bayes Theorem , Ruminants , Diet/veterinary , Bacteria/genetics , Animal Feed/analysis , Lactation
9.
Polymers (Basel) ; 15(22)2023 Nov 18.
Article in English | MEDLINE | ID: mdl-38006180

ABSTRACT

Several polyurethane-formulated films with curcumin and/or chitosan additives for food packaging have been previously obtained. The study examines the effect of the additives on the film's morphological, mechanical, barrier, and migration properties. Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), water contact angle, thermogravimetric and differential thermal analysis (TGA and DTGA), differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA), oxygen transmission rate (OTR), water vapor transmission rate (WVTR), and the overall and specific migration tests were conducted. The results show that the presence of chitosan significantly increased the overall migration and mechanical properties, such as the elongation at break, tensile strength, and Young's modulus of most polyurethane formulations, while curcumin had a minor influence on the mechanical performance. Based on the results, formulations with curcumin but without chitosan are suitable for food packaging.

10.
J Anim Sci Biotechnol ; 14(1): 133, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37907951

ABSTRACT

BACKGROUND: The red macroalgae Asparagopsis is an effective methanogenesis inhibitor due to the presence of halogenated methane (CH4) analogues, primarily bromoform (CHBr3). This study aimed to investigate the degradation process of CHBr3 from A. taxiformis in the rumen and whether this process is diet-dependent. An in vitro batch culture system was used according to a 2 × 2 factorial design, assessing two A. taxiformis inclusion rates [0 (CTL) and 2% DM diet (AT)] and two diets [high-concentrate (HC) and high-forage diet (HF)]. Incubations lasted for 72 h and samples of headspace and fermentation liquid were taken at 0, 0.5, 1, 3, 6, 8, 12, 16, 24, 48 and 72 h to assess the pattern of degradation of CHBr3 into dibromomethane (CH2Br2) and fermentation parameters. Additionally, an in vitro experiment with pure cultures of seven methanogens strains (Methanobrevibacter smithii, Methanobrevibacter ruminantium, Methanosphaera stadtmanae, Methanosarcina barkeri, Methanobrevibacter millerae, Methanothermobacter wolfei and Methanobacterium mobile) was conducted to test the effects of increasing concentrations of CHBr3 (0.4, 2, 10 and 50 µmol/L). RESULTS: The addition of AT significantly decreased CH4 production (P = 0.002) and the acetate:propionate ratio (P = 0.003) during a 72-h incubation. The concentrations of CHBr3 showed a rapid decrease with nearly 90% degraded within the first 3 h of incubation. On the contrary, CH2Br2 concentration quickly increased during the first 6 h and then gradually decreased towards the end of the incubation. Neither CHBr3 degradation nor CH2Br2 synthesis were affected by the type of diet used as substrate, suggesting that the fermentation rate is not a driving factor involved in CHBr3 degradation. The in vitro culture of methanogens showed a dose-response effect of CHBr3 by inhibiting the growth of M. smithii, M. ruminantium, M. stadtmanae, M. barkeri, M. millerae, M. wolfei, and M. mobile. CONCLUSIONS: The present work demonstrated that CHBr3 from A. taxiformis is quickly degraded to CH2Br2 in the rumen and that the fermentation rate promoted by different diets is not a driving factor involved in CHBr3 degradation.

11.
Heredity (Edinb) ; 131(5-6): 307-315, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37884616

ABSTRACT

An interesting conundrum was recently revealed by R. Abbott when he found that the number of hybrid zones reported in the literature for plants is very low, given the propensity of plants to hybridise. In another literature survey on hybrid zones performed over the period 1970-2022, we found that the number of hybrid zones reported for vertebrates was 2.3 times greater than that reported for vascular plants, even though there are about six times more vascular plant species than vertebrates. Looking at the number of papers reporting hybrid zones, there are 4.9 times more on vertebrates than on vascular plants. These figures support the relevance of this conundrum. In this paper we aim to shed light on this question by providing a structured discussion of the causes that may underlie this conundrum. We propose six non-mutually exclusive factors, namely lack or deficit of spatial structure, lack or deficit of genetic structure, effects of hybridisation between non-closely related species, lability of plant hybrid zones over time, botanists' perception of hybridisation, and deficit of population genetic data. There does not appear to be a single factor that explains our puzzle, which applies to all cases of plants where hybridisation is detected but no hybrid zone is reported. It is argued that some plant features suggest that the puzzle is not, at least entirely, due to insufficient knowledge of the specific cases, a hypothesis that should be addressed with a wider range of empirical data across different taxonomic groups.


Subject(s)
Hybridization, Genetic , Plants , Male , Animals , Plants/genetics , Genetics, Population
12.
Sci Adv ; 9(39): eadi0415, 2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37774035

ABSTRACT

Fermi liquids respond differently to perturbations depending on whether their frequency is higher (collisionless regime) or lower (hydrodynamic regime) than the interparticle collision rate. This results in a different phase velocity between the collisionless zero sound and the hydrodynamic first sound. We performed terahertz photocurrent nanoscopy measurements on graphene devices, with a metallic gate close to the graphene layer, to probe the dispersion of propagating acoustic plasmons, the counterpart of sound modes in electronic Fermi liquids. We report the observation of a change in the plasmon phase velocity when the excitation frequency approaches the electron-electron collision rate that is compatible with the transition between the zero and the first sound mode.

13.
Angew Chem Int Ed Engl ; 62(36): e202308467, 2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37395499

ABSTRACT

This report unveils an advancement in the formation of a Lewis superacid (LSA) and an organic superbase by the geometrical deformation of an organoboron species towards a T-shaped geometry. The boron dication [2]2+ supported by an amido diphosphine pincer ligand features both a large fluoride ion affinity (FIA>SbF5 ) and hydride ion affinity (HIA>B(C6 F5 )3 ), which qualifies it as both a hard and soft LSA. The unusual Lewis acidic properties of [2]2+ are further showcased by its ability to abstract hydride and fluoride from Et3 SiH and AgSbF6 respectively, and effectively catalyze the hydrodefluorination, defluorination/arylation, as well as reduction of carbonyl compounds. One and two-electron reduction of [2]2+ affords stable boron radical cation [2]⋅+ and borylene 2, respectively. The former species has an extremely high spin density of 0.798e at the boron atom, whereas the latter compound has been demonstrated to be a strong organic base (calcd. pKBH + (MeCN)=47.4) by both theoretical and experimental assessment. Overall, these results demonstrate the strong ability of geometric constraining to empower the central boron atom.

14.
Animal ; 17(8): 100895, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37515965

ABSTRACT

Ruminants are able to produce large quantities of saliva which enter into the rumen and salivary components exert different physiological functions. Although previous research has indicated that salivary immunoglobulins can partially modulate the rumen microbial activity, the role of the salivary components other than ions on the rumen microbial ecosystem has not been thoroughly investigated in ruminants. To investigate this modulatory activity, a total of 16 semi-continuous in vitro cultures with oats hay and concentrate were used to incubate rumen fluid from four donor goats with autoclaved saliva (AUT) as negative control, saliva from the same rumen fluid donor (OWN) as positive control, and either goat (GOAT) or sheep (SHEEP) saliva as experimental interventions. Fermentation was monitored throughout 7 days of incubation and the microbiome and metabolome were analysed at the end of this incubation by Next-Generation sequencing and liquid chromatography coupled with mass spectrometry, respectively. Characterisation of the proteome and metabolome of the different salivas used for the incubation showed a high inter-animal variability in terms of metabolites and proteins, including immunoglobulins. Incubation with AUT saliva promoted lower fermentative activity in terms of gas production (-9.4%) and highly divergent prokaryotic community in comparison with other treatments (OWN, GOAT and SHEEP) suggesting a modulatory effect derived from the presence of bioactive salivary components. Microbial alpha-diversity at amplicon sequence variant (ASV) level was unaffected by treatment. However, some differences were found in the microbial communities across treatments, which were mostly caused by a greater abundance of Proteobacteria and Rikenellacea in the AUT treatment and lower of Prevotellaceae. These bacteria, which are key in the rumen metabolism, had greater abundances in GOAT and SHEEP treatments. Incubation with GOAT saliva led to a lower protozoal concentration and propionate molar proportion indicating a capacity to modulate the rumen microbial ecosystem. The metabolomics analysis showed that the AUT samples were clustered apart from the rest indicating different metabolic pathways were promoted in this treatment. These results suggest that specific salivary components contribute to host-associated role in selecting the rumen commensal microbiota and its activity. These findings could open the possibility of developing new strategies to modulate the saliva composition as a way to manipulate the rumen function and activity.


Subject(s)
Goats , Microbiota , Animals , Sheep , Goats/physiology , Diet/veterinary , Rumen/metabolism , Multiomics , Ruminants/microbiology , Fermentation , Animal Feed/analysis
15.
J Dairy Sci ; 106(7): 4634-4649, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37225586

ABSTRACT

Ruminants are born with an anatomically, microbiologically, and metabolically immature rumen. Optimizing the rearing of young ruminants represent an important challenge in intensive dairy farms. Therefore, the objective of this study was to evaluate the effects of dietary supplementation of young ruminants with a plant extract blend containing turmeric, thymol, and yeast cell wall components such as mannan oligosaccharides and ß-glucans. One hundred newborn female goat kids were randomly allocated to 2 experimental treatments, which were unsupplemented (CTL) or supplemented with the blend containing plant extracts and yeast cell wall components (PEY). All animas were fed with milk replacer, concentrate feed, and oat hay, and were weaned at 8 wk of age. Dietary treatments lasted from wk 1 to 22 and 10 animals from each treatment were randomly selected to monitor feed intake, digestibility, and health-related indicators. These latter animals were euthanized at wk 22 of age to study the rumen anatomical, papillary, and microbiological development, whereas the remaining animals were monitored for reproductive performance and milk yield during the first lactation. Results indicated that PEY supplementation did not lead to feed intake or health issues because PEY animals tended to have a higher concentrate intake and lower diarrheal incidence than CTL animals. No differences between treatments were noted in terms of feed digestibility, rumen microbial protein synthesis, health-related metabolites, or blood cell counts. Supplementation with PEY promoted a higher rumen empty weight, and rumen relative proportion to the total digestive tract weight, than CTL animals. This was accompanied with a higher rumen papillary development in terms of papillae length and surface area in the cranial ventral and caudal ventral sacs, respectively. The PEY animals also had higher expression of the MCT1 gene, which is related to volatile fatty acid absorption by the rumen epithelium, than CTL animals. The antimicrobial effects of the turmeric and thymol could explain the decreased the rumen absolute abundance of protozoa and anaerobic fungi. This antimicrobial modulation led to a change in the bacterial community structure, a decrease in the bacteria richness, and to the disappearance (i.e., Prevotellaceae_UCG-004, Bacteroidetes_BD2-2, Papillibacter, Schwartzia, and Absconditabacteriales_SR1) or decline of certain bacterial taxa (i.e., Prevotellaceae_NK3B31_group, and Clostridia_UCG-014). Supplementation with PEY also decreased the relative abundance of fibrolytic (i.e., Fibrobacter succinogenes and Eubacterium ruminantium) and increased amylolytic bacteria (Selenomonas ruminantium). Although these microbial changes were not accompanied with significant differences in the rumen fermentation, this supplementation led to increased body weight gain during the preweaning period, higher body weight during the postweaning period, and higher fertility rate during the first gestation. On the contrary, no residual effects of this nutritional intervention were noted on the milk yield and milk components during the first lactation. In conclusion, supplementation with this blend of plant extracts and yeast cell wall component in early life could be considered as a sustainable nutritional strategy to increase body weight gain and optimize the rumen anatomical and microbiological development in young ruminants, despite having minor productive implications later in life.


Subject(s)
Saccharomyces cerevisiae , Thymol , Female , Animals , Thymol/pharmacology , Curcuma , Rumen/metabolism , Dietary Supplements , Weight Gain , Cell Wall , Goats/metabolism
16.
Stud Health Technol Inform ; 302: 88-92, 2023 May 18.
Article in English | MEDLINE | ID: mdl-37203615

ABSTRACT

Laboratory data must be interoperable to be able to accurately compare the results of a lab test between healthcare organizations. To achieve this, terminologies like LOINC (Logical Observation Identifiers, Names and Codes) provide unique identification codes for laboratory tests. Once standardized, the numeric results of laboratory tests can be aggregated and represented in histograms. Due to the characteristics of Real World Data (RWD), outliers and abnormal values are common, but these cases should be treated as exceptions, excluding them from possible analysis. The proposed work analyses two methods capable of automating the selection of histogram limits to sanitize the generated lab test result distributions, Tukey's box-plot method and a "Distance to Density" approach, within the TriNetX Real World Data Network. The generated limits using clinical RWD are generally wider for Tukey's method and narrower for the second method, both greatly dependent on the values used for the algorithm's parameters.


Subject(s)
Laboratories , Logical Observation Identifiers Names and Codes
17.
ACS Nano ; 17(8): 7377-7383, 2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37010352

ABSTRACT

Photonic crystals and metamaterials are two overarching paradigms for manipulating light. By combining these approaches, hypercrystals can be created, which are hyperbolic dispersion metamaterials that undergo periodic modulation and mix photonic-crystal-like aspects with hyperbolic dispersion physics. Despite several attempts, there has been limited experimental realization of hypercrystals due to technical and design constraints. In this work, hypercrystals with nanoscale lattice constants ranging from 25 to 160 nm were created. The Bloch modes of these crystals were then measured directly using scattering near-field microscopy. The dispersion of the Bloch modes was extracted from the frequency dependence of the Bloch modes, revealing a clear switch from positive to negative group velocity. Furthermore, spectral features specific to hypercrystals were observed in the form of sharp density of states peaks, which are a result of intermodal coupling and should not appear in ordinary polaritonic crystals with an equivalent geometry. These findings are in agreement with theoretical predictions that even simple lattices can exhibit a rich hypercrystal bandstructure. This work is of both fundamental and practical interest, providing insight into nanoscale light-matter interactions and the potential to manipulate the optical density of states.

18.
J Dairy Sci ; 106(6): 3947-3960, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37105878

ABSTRACT

Enhancing the ability of animals to convert feed into meat or milk by optimizing feed efficiency (FE) has become a priority in livestock research. Although untargeted metabolomics is increasingly used in this field and may improve our understanding of FE, no information in this regard is available in dairy ewes. This study was conducted to (1) discriminate sheep divergent for FE and (2) provide insights into the physiological mechanisms contributing to FE through high-throughput metabolomics. The ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-Q/TOF-MS) technique was applied to easily accessible animal fluids (plasma and milk) to assess whether their metabolome differs between high- and low-feed efficient lactating ewes (H-FE and L-FE groups, respectively; 8 animals/group). Blood and milk samples were collected on the last day of the 3-wk period used for FE estimation. A total of 793 features were detected in plasma and 334 in milk, with 100 and 38 of them, respectively, showing differences between H-FE and L-FE. The partial least-squares discriminant analysis separated both groups of animals regardless of the type of sample. Plasma allowed the detection of a greater number of differential features; however, results also supported the usefulness of milk, more easily accessible, to discriminate dairy sheep divergent for FE. Regarding pathway analysis, nitrogen metabolism (either anabolism or catabolism) seemed to play a central role in FE, with plasma and milk consistently indicating a great impact of AA metabolism. A potential influence of pathways related to energy/lipid metabolism on FE was also observed. The variable importance in the projection plot revealed 15 differential features in each matrix that contributed the most for the separation in H-FE and L-FE, such as l-proline and phosphatidylcholine 20:4e in plasma or l-pipecolic acid and phosphatidylethanolamine (18:2) in milk. Overall, untargeted metabolomics provided valuable information into metabolic pathways that may underlie FE in dairy ewes, with a special relevance of AA metabolism in determining this complex phenotype in the ovine. Further research is warranted to validate these findings.


Subject(s)
Lactation , Milk , Animals , Sheep , Female , Milk/chemistry , Lactation/metabolism , Metabolomics/methods , Metabolome , Mass Spectrometry/veterinary
19.
Angew Chem Int Ed Engl ; 62(15): e202219211, 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-36807666

ABSTRACT

Under an atmosphere of carbon monoxide (CO), a (phosphino)diazomethyl anion salt [[P]-CN2 ][K(18-C-6)(THF)] (1) ([P]=[(CH2 )(NDipp)]2 P; 18-C-6=18-crown-6; Dipp=2,6-diisopropylphenyl) undergoes a facile N2 /CO exchange reaction giving the (phosphino)ketenyl anion salt [[P]-CCO][K(18-C-6)] (2). Oxidation of 2 with elemental Se affords the (selenophosphoryl)ketenyl anion salt [P](Se)-CCO][K(18-C-6)] (3). These ketenyl anions feature a strongly bent geometry at the P-bound carbon and this carbon atom is highly nucleophilic. The electronic structure of the ketenyl anion [[P]-CCO]- of 2 is examined by theoretical studies. Reactivity investigations demonstrate 2 as a versatile synthon for derivatives of ketene, enolate, acrylate and acrylimidate moieties.

SELECTION OF CITATIONS
SEARCH DETAIL
...