Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Language
Publication year range
2.
Water Environ Res ; 95(2): e10840, 2023.
Article in English | MEDLINE | ID: mdl-36744443

ABSTRACT

An experimental drinking water distribution system (DWDS) was used to evaluate the evolution of particle size distribution (PSD) and basic quality parameters of ultrafiltered water with or without pre-ozonation. An ultrafiltration (UF) module was set up, associated with a pre-ozonation system (3.7 g O3 /m3 ). The permeate was circulated in the DWDS (300 m; 0.9 m/s) with 0.4 mg/L of chlorine, and the analysis of the PSD was performed using a ß-variable mathematical model. A better control of membrane fouling was obtained with pre-ozonation, and PSD was necessary to observe water quality differences between permeates and in the DWDS. A decrease in particle concentration of 1.8 logarithms was obtained with the application of UF membranes, while a decrease of only 1.2 logarithms was obtained with pre-ozonation. The system without pre-ozonation showed a higher efficiency at removing smaller particles (around 2 µm), with the absence of particles larger than 23 µm during both stages. The PSD revealed a worsening of water quality in the DWDS with an increase of particles smaller than 5 µm during the application of UF membranes, while with pre-ozonation, all particle sizes analyzed increased their concentration. PRACTITIONER POINTS: Pre-ozonation led to a better control of membrane fouling, but a worsening of permeate quality according to particle size distribution. Pre-ozonation does not improve the turbidity, dissolved organic carbon or UV254 removal capacity of ultrafiltration during drinking water treatment. Particles size distribution reveals the deterioration of water quality in a drinking water distribution system better than turbidity or DOC. Ozone prior to ultrafiltration membranes led to a worsening of permeate quality, more significant in the drinking water distribution system.


Subject(s)
Drinking Water , Ozone , Water Purification , Water Quality , Particle Size , Membranes, Artificial , Ultrafiltration
3.
Article in English | MEDLINE | ID: mdl-34187317

ABSTRACT

This study measured the effect of low activated sludge dissolved oxygen (DO) concentration on a membrane bioreactor (MBR) treating real urban wastewater with respect to organic matter and nitrogen removal efficiency and transmembrane pressure evolution. For this purpose, a full-scale experimental pre-denitrification MBR system was operated at a constant permeate flow rate of Q = 0.45 m3h-1 with intermittent aeration. The experimental installation worked at high hydraulic retention time, variable sludge retention time and with activated sludge temperatures of between 22.0 to 31.3 °C. Mean DO concentrations in the activated sludge were gradually decreased from 1.25 mgO2L-1 to less than 0.20 mgO2L-1. Variations in DO set points did not affect the main operational parameters of the MBR system and no clear relation was shown between DO concentration decrease and membrane fouling. At DO concentrations lower than 0.2 mgO2L-1, a deterioration in MBR effluent quality was observed, mainly with respect to chemical oxygen demand, biochemical oxygen demand at five days and NH4+, however, the opposite effect was observed for NO3-. These results indicate that employing low DO set points is a promising strategy for application in MBR systems.


Subject(s)
Sewage , Waste Disposal, Fluid , Bioreactors , Membranes, Artificial , Nitrogen , Oxygen , Wastewater
4.
Water Sci Technol ; 67(4): 894-900, 2013.
Article in English | MEDLINE | ID: mdl-23306270

ABSTRACT

The removal performance of heavy metals by two experimental full-scale membrane bioreactors (microfiltration and ultrafiltration) and the influence of activated sludge total suspended solid (TSS) concentration were studied under real operational conditions. Influent and effluent Be, Sc, V, Cr, Mn, Co, Ni, Cu, Zn, As, Mo, Cd, Ba, Sn, Sb, Pb and U concentrations were analysed by inductively coupled plasma-mass spectrometry. An average contamination rate for most of the analysed heavy metals was observed in raw wastewater, resulting in effluents without limitation for reuse in agricultural destinations according to Spanish law. Removal efficiencies up to 80% were obtained regardless of whether microfiltration or ultrafiltration membranes were used, except for As, Mo and Sb. The removal yields of different heavy metals can be strengthened by increasing the activated sludge TSS concentration, mainly at concentrations above 10 g/L.


Subject(s)
Bioreactors , Metals, Heavy/isolation & purification , Water Pollutants, Chemical/isolation & purification , Water Purification , Conservation of Natural Resources , Membranes, Artificial , Sewage , Ultrafiltration
SELECTION OF CITATIONS
SEARCH DETAIL