Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Language
Publication year range
1.
Front Immunol ; 13: 844878, 2022.
Article in English | MEDLINE | ID: mdl-35251044

ABSTRACT

Several strategies are used by Escherichia coli to evade the host innate immune system in the blood, such as the cleavage of complement system proteins by secreted proteases. Members of the Serine Proteases Autotransporters of Enterobacteriaceae (SPATE) family have been described as presenting proteolytic effects against complement proteins. Among the SPATE-encoding genes sat (secreted autotransporter toxin) has been detected in high frequencies among strains of E. coli isolated from bacteremia. Sat has been characterized for its cytotoxic action, but the possible immunomodulatory effects of Sat have not been investigated. Therefore, this study aimed to evaluate the proteolytic effects of Sat on complement proteins and the role in pathogenesis of BSI caused by extraintestinal E. coli (ExPEC). E. coli EC071 was selected as a Sat-producing ExPEC strain. Whole-genome sequencing showed that sat sequences of EC071 and uropathogenic E. coli CFT073 present 99% identity. EC071 was shown to be resistant to the bactericidal activity of normal human serum (NHS). Purified native Sat was used in proteolytic assays with proteins of the complement system and, except for C1q, all tested substrates were cleaved by Sat in a dose and time-dependent manner. Moreover, E. coli DH5α survived in NHS pre-incubated with Sat. EC071-derivative strains harboring sat knockout and in trans complementations producing either active or non-active Sat were tested in a murine sepsis model. Lethality was reduced by 50% when mice were inoculated with the sat mutant strain. The complemented strain producing active Sat partially restored the effect caused by the wild-type strain. The results presented in this study show that Sat presents immunomodulatory effects by cleaving several proteins of the three complement system pathways. Therefore, Sat plays an important role in the establishment of bloodstream infections and sepsis.


Subject(s)
Bacteremia , Bacterial Toxins , Escherichia coli Proteins , Uropathogenic Escherichia coli , Animals , Bacterial Toxins/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Mice , Serine Endopeptidases/metabolism , Serine Proteases/genetics , Type V Secretion Systems/genetics , Type V Secretion Systems/metabolism
2.
PLoS One ; 15(2): e0228959, 2020.
Article in English | MEDLINE | ID: mdl-32084148

ABSTRACT

Secreted autotransporter toxin (Sat) is a 107-kDa serine protease autotransporter of Enterobacteriaceae (SPATE) presenting cytotoxic activity in renal and bladder cells. Further studies have detected the Sat-encoding gene (sat) in enteroaggregative Escherichia coli (EAEC) and in E. coli strains isolated from neonatal septicemia and meningitis. Here, we investigated the role of Sat as a cytotoxin of EAEC. Sat was purified from a strain of E. coli harboring sat (DEC/Sat+, O126:H2) and used to raise antibodies in rabbit. The presence of Sat was detected by ELISA in the supernatant of 93.7% of EAEC strains harboring sat and in none lacking the gene. The effect of Sat during infection was investigated in polarized Caco-2 cells infected with Sat-producing EAEC (CV323/77, O125ab:H21). This strain induced intense cell detachment, which was inhibited by PMSF or Sat antiserum. Also, sat transcription and Sat production were detected during infection. Here we demonstrate that Sat is internalized in polarized cells leading to F-actin disruption which preceded cell detachment. A comparative study of the toxin action in cell lines corresponding to the infection sites in which bacteria carrying the sat gene have been isolated was performed. Cells originating from the gastrointestinal tract (Caco-2), urinary (LLC-PK1) and endothelium (HUVEC) were incubated with purified Sat. The time required for observation of cell damage differed according to the cell line. HUVEC cells were more sensitive to Sat than cells derived from urinary and intestinal tracts. The intense activity of Sat on the endothelial cells suggests that Sat could also be a virulence factor for the bacteria in the bloodstream. In addition, this is the first work demonstrating that Sat induces cytotoxic effect during EAEC infection in vitro. The cell damage observed during infection indicates that Sat may be another toxin with cytotoxic role in the EAEC pathogenesis.


Subject(s)
Bacterial Toxins/genetics , Bacterial Toxins/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Bacterial Toxins/toxicity , Caco-2 Cells , Cytotoxins/metabolism , Endothelial Cells/metabolism , Epithelial Cells/metabolism , Escherichia coli/metabolism , Escherichia coli/pathogenicity , Escherichia coli Infections/microbiology , Escherichia coli Proteins/toxicity , Humans , Serine Endopeptidases/metabolism , Type V Secretion Systems/metabolism , Virulence Factors/metabolism
3.
J Microbiol ; 54(11): 745-752, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27796929

ABSTRACT

Using clonal phylogenetic methods, it has been demonstrated that O111:H25 atypical enteropathogenic E. coli (aEPEC) strains belong to distinct clones, suggesting the possibility that their ability to interact with different hosts and abiotic surfaces can vary from one clone to another. Accordingly, the ability of O111:H25 aEPEC strains derived from human, cat and dogs to adhere to epithelial cells has been investigated, along with their ability to interact with macrophages and to form biofilms on polystyrene, a polymer used to make biomedical devices. The results demonstrated that all the strains analyzed were able to adhere to, and to form pedestals on, epithelial cells, mechanisms used by E. coli to become strongly attached to the host. The strains also show a Localized-Adherence-Like (LAL) pattern of adhesion on HEp-2 cells, a behavior associated with acute infantile diarrhea. In addition, the O111:H25 aEPEC strains derived either from human or domestic animals were able to form long filaments, a phenomenon used by some bacteria to avoid phagocytosis. O111:H25 aEPEC strains were also encountered inside vacuoles, a characteristic described for several bacterial strains as a way of protecting themselves against the environment. They were also able to induce TNF-α release via two routes, one dependent on TLR-4 and the other dependent on binding of Type I fimbriae. These O111:H25 strains were also able to form biofilms on polystyrene. In summary the results suggest that, regardless of their source (i.e. linked to human origin or otherwise), O111:H25 aEPEC strains carry the potential to cause human disease.


Subject(s)
Bacterial Adhesion , Enteropathogenic Escherichia coli/metabolism , Enteropathogenic Escherichia coli/pathogenicity , Escherichia coli Infections/microbiology , Animals , Biofilms/growth & development , Cats , Dogs , Enteropathogenic Escherichia coli/isolation & purification , Enteropathogenic Escherichia coli/ultrastructure , Epithelial Cells/microbiology , Escherichia coli Proteins , Fimbriae, Bacterial/immunology , Humans , Macrophages/immunology , Macrophages/microbiology , Mice , Phylogeny , Polystyrenes , Toll-Like Receptor 4/deficiency , Toll-Like Receptor 4/genetics , Tumor Necrosis Factor-alpha/metabolism , Virulence Factors
4.
Biomed Res Int ; 2014: 896235, 2014.
Article in English | MEDLINE | ID: mdl-24949475

ABSTRACT

Plasmid encoded toxin (Pet) is a serine protease originally described in enteroaggregative Escherichia coli (EAEC) prototype strain 042 whose entire characterization was essentially obtained from studies performed with the purified toxin. Here we show that Pet is not exclusive to EAEC. Atypical enteropathogenic Escherichia coli (aEPEC) strains, isolated from diarrhea cases, express Pet and its detection in supernatants of infected HEp-2 cells coincides with the appearance of cell damage, which, in turn, were similar to those described with purified Pet. Pet secretion and the cytotoxic effects are time and culture medium dependent. In presence of DMEM supplemented with tryptone cell rounding and detachment were observed after just 5 h of incubation with the bacteria. In the absence of tryptone, the cytotoxic effects were detected only after 24 h of infection. We also show that, in addition to the prototype EAEC, other pet+ EAEC strains, also isolated from diarrhea cases, induce cellular damage in the same degree as the aEPEC. The cytotoxic effects of EAEC and aEPEC strains were significantly reduced in the presence of a serine protease inhibitor or anti-Pet IgG serum. Our results show a common aspect between the aEPEC and EAEC and provide the first evidence pointing to a role of Pet in aEPEC pathogenesis.


Subject(s)
Bacterial Toxins/genetics , Enteropathogenic Escherichia coli/genetics , Plasmids/metabolism , Culture Media , Diarrhea/microbiology , Enteropathogenic Escherichia coli/pathogenicity , Humans , Plasmids/genetics
5.
Appl Microbiol Biotechnol ; 97(2): 775-82, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22707055

ABSTRACT

Aspergillus tubingensis and Bionectria ochroleuca showed excellent extracellular ability to synthesize silver nanoparticles (Ag NP), spherical in shape and 35 ± 10 nm in size. Ag NP were characterized by transmission electron microscopy, X-ray diffraction analysis, and photon correlation spectroscopy for particle size and zeta potential. Proteins present in the fungal filtrate and in Ag NP dispersion were analyzed by electrophoresis (sodium dodecyl sulfate polyacrylamide gel electrophoresis). Ag NP showed pronounced antifungal activity against Candida sp, frequently occurring in hospital infections, with minimal inhibitory concentration in the range of 0.11-1.75 µg/mL. Regarding antibacterial activity, nanoparticles produced by A. tubingensis were more effective compared to the other fungus, inhibiting 98.0 % of Pseudomonas. aeruginosa growth at 0.28 µg/mL. A. tubingensis synthesized Ag NP with surprisingly high and positive surface potential, differing greatly from all known fungi. These data open the possibility of obtaining biogenic Ag NP with positive surface potential and new applications.


Subject(s)
Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Aspergillus/metabolism , Hypocreales/metabolism , Metal Nanoparticles/chemistry , Silver/metabolism , Anti-Bacterial Agents/chemistry , Pseudomonas aeruginosa/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...