Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Front Cardiovasc Med ; 9: 1016032, 2022.
Article in English | MEDLINE | ID: mdl-36426221

ABSTRACT

A growing number of artificial intelligence (AI)-based systems are being proposed and developed in cardiology, driven by the increasing need to deal with the vast amount of clinical and imaging data with the ultimate aim of advancing patient care, diagnosis and prognostication. However, there is a critical gap between the development and clinical deployment of AI tools. A key consideration for implementing AI tools into real-life clinical practice is their "trustworthiness" by end-users. Namely, we must ensure that AI systems can be trusted and adopted by all parties involved, including clinicians and patients. Here we provide a summary of the concepts involved in developing a "trustworthy AI system." We describe the main risks of AI applications and potential mitigation techniques for the wider application of these promising techniques in the context of cardiovascular imaging. Finally, we show why trustworthy AI concepts are important governing forces of AI development.

2.
Int J Comput Assist Radiol Surg ; 11(9): 1647-59, 2016 09.
Article in English | MEDLINE | ID: mdl-26995601

ABSTRACT

PURPOSE: Cochlear implantation is a safe and effective surgical procedure to restore hearing in deaf patients. However, the level of restoration achieved may vary due to differences in anatomy, implant type and surgical access. In order to reduce the variability of the surgical outcomes, we previously proposed the use of a high-resolution model built from [Formula: see text] images and then adapted to patient-specific clinical CT scans. As the accuracy of the model is dependent on the precision of the original segmentation, it is extremely important to have accurate [Formula: see text] segmentation algorithms. METHODS: We propose a new framework for cochlea segmentation in ex vivo [Formula: see text] images using random walks where a distance-based shape prior is combined with a region term estimated by a Gaussian mixture model. The prior is also weighted by a confidence map to adjust its influence according to the strength of the image contour. Random walks is performed iteratively, and the prior mask is aligned in every iteration. RESULTS: We tested the proposed approach in ten [Formula: see text] data sets and compared it with other random walks-based segmentation techniques such as guided random walks (Eslami et al. in Med Image Anal 17(2):236-253, 2013) and constrained random walks (Li et al. in Advances in image and video technology. Springer, Berlin, pp 215-226, 2012). Our approach demonstrated higher accuracy results due to the probability density model constituted by the region term and shape prior information weighed by a confidence map. CONCLUSION: The weighted combination of the distance-based shape prior with a region term into random walks provides accurate segmentations of the cochlea. The experiments suggest that the proposed approach is robust for cochlea segmentation.


Subject(s)
Algorithms , Cochlea/surgery , Cochlear Implantation/methods , Tomography, X-Ray Computed/methods , Cochlea/diagnostic imaging , Humans , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL