Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Blood ; 143(13): 1282-1292, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38232308

ABSTRACT

ABSTRACT: As a functional component of erythrocyte hemoglobin, iron is essential for oxygen delivery to all tissues in the body. The liver-derived peptide hepcidin is the master regulator of iron homeostasis. During anemia, the erythroid hormone erythroferrone regulates hepcidin synthesis to ensure the adequate supply of iron to the bone marrow for red blood cell production. However, mounting evidence suggested that another factor may exert a similar function. We identified the hepatokine fibrinogen-like 1 (FGL1) as a previously undescribed suppressor of hepcidin that is induced in the liver in response to hypoxia during the recovery from anemia, and in thalassemic mice. We demonstrated that FGL1 is a potent suppressor of hepcidin in vitro and in vivo. Deletion of Fgl1 in mice results in higher hepcidin levels at baseline and after bleeding. FGL1 exerts its activity by directly binding to bone morphogenetic protein 6 (BMP6), thereby inhibiting the canonical BMP-SMAD signaling cascade that controls hepcidin transcription.


Subject(s)
Anemia , Hepcidins , Mice , Animals , Hepcidins/genetics , Hepcidins/metabolism , Anemia/genetics , Anemia/metabolism , Iron/metabolism , Liver/metabolism , Bone Morphogenetic Protein 6/genetics , Bone Morphogenetic Protein 6/metabolism , Homeostasis
2.
Nat Commun ; 14(1): 8075, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38092754

ABSTRACT

The metabolic and signaling pathways regulating aggressive mesenchymal colorectal cancer (CRC) initiation and progression through the serrated route are largely unknown. Although relatively well characterized as BRAF mutant cancers, their poor response to current targeted therapy, difficult preneoplastic detection, and challenging endoscopic resection make the identification of their metabolic requirements a priority. Here, we demonstrate that the phosphorylation of SCAP by the atypical PKC (aPKC), PKCλ/ι promotes its degradation and inhibits the processing and activation of SREBP2, the master regulator of cholesterol biosynthesis. We show that the upregulation of SREBP2 and cholesterol by reduced aPKC levels is essential for controlling metaplasia and generating the most aggressive cell subpopulation in serrated tumors in mice and humans. Since these alterations are also detected prior to neoplastic transformation, together with the sensitivity of these tumors to cholesterol metabolism inhibitors, our data indicate that targeting cholesterol biosynthesis is a potential mechanism for serrated chemoprevention.


Subject(s)
Protein Kinase C , Signal Transduction , Animals , Humans , Mice , Cell Transformation, Neoplastic/genetics , Cholesterol , Epithelial Cells/metabolism , Protein Kinase C/genetics , Protein Kinase C/metabolism
3.
Elife ; 122023 Dec 28.
Article in English | MEDLINE | ID: mdl-38153418

ABSTRACT

Myelodysplastic syndrome (MDS) is a heterogeneous group of bone marrow stem cell disorders characterized by ineffective hematopoiesis and cytopenias, most commonly anemia. Red cell transfusion therapy for anemia in MDS results in iron overload, correlating with reduced overall survival. Whether the treatment of iron overload benefits MDS patients remains controversial. We evaluate underlying iron-related pathophysiology and the effect of iron chelation using deferiprone on erythropoiesis in NUP98-HOXD13 transgenic mice, a highly penetrant well-established MDS mouse model. Our results characterize an iron overload phenotype with aberrant erythropoiesis in these mice which was reversed by deferiprone-treatment. Serum erythropoietin levels decreased while erythroblast erythropoietin receptor expression increased in deferiprone-treated MDS mice. We demonstrate, for the first time, normalized expression of the iron chaperones Pcbp1 and Ncoa4 and increased ferritin stores in late-stage erythroblasts from deferiprone-treated MDS mice, evidence of aberrant iron trafficking in MDS erythroblasts. Importantly, erythroblast ferritin is increased in response to deferiprone, correlating with decreased erythroblast ROS. Finally, we confirmed increased expression of genes involved in iron uptake, sensing, and trafficking in stem and progenitor cells from MDS patients. Taken together, our findings provide evidence that erythroblast-specific iron metabolism is a novel potential therapeutic target to reverse ineffective erythropoiesis in MDS.


Subject(s)
Anemia , Iron Overload , Humans , Mice , Animals , Erythropoiesis , Deferiprone , Iron Overload/complications , Iron , Mice, Transgenic , Ferritins , Iron Chelating Agents/pharmacology
4.
bioRxiv ; 2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37066218

ABSTRACT

As a functional component of erythrocyte hemoglobin, iron is essential for oxygen delivery to all tissues in the body. The liver-derived peptide hepcidin is the master regulator of iron homeostasis. During anemia, the erythroid hormone erythroferrone regulates hepcidin synthesis to ensure adequate supply of iron to the bone marrow for red blood cells production. However, mounting evidence suggested that another factor may exert a similar function. We identified the hepatokine FGL1 as a previously undescribed suppressor of hepcidin that is induced in the liver in response to hypoxia during the recovery from anemia and in thalassemic mice. We demonstrated that FGL1 is a potent suppressor of hepcidin in vitro and in vivo . Deletion of Fgl1 in mice results in a blunted repression of hepcidin after bleeding. FGL1 exerts its activity by direct binding to BMP6, thereby inhibiting the canonical BMP-SMAD signaling cascade that controls hepcidin transcription. Key points: 1/ FGL1 regulates iron metabolism during the recovery from anemia. 2/ FGL1 is an antagonist of the BMP/SMAD signaling pathway.

5.
Cancer Cell ; 41(2): 252-271.e9, 2023 02 13.
Article in English | MEDLINE | ID: mdl-36525970

ABSTRACT

Mesenchymal colorectal cancer (mCRC) is microsatellite stable (MSS), highly desmoplastic, with CD8+ T cells excluded to the stromal periphery, resistant to immunotherapy, and driven by low levels of the atypical protein kinase Cs (aPKCs) in the intestinal epithelium. We show here that a salient feature of these tumors is the accumulation of hyaluronan (HA) which, along with reduced aPKC levels, predicts poor survival. HA promotes epithelial heterogeneity and the emergence of a tumor fetal metaplastic cell (TFMC) population endowed with invasive cancer features through a network of interactions with activated fibroblasts. TFMCs are sensitive to HA deposition, and their metaplastic markers have prognostic value. We demonstrate that in vivo HA degradation with a clinical dose of hyaluronidase impairs mCRC tumorigenesis and liver metastasis and enables immune checkpoint blockade therapy by promoting the recruitment of B and CD8+ T cells, including a proportion with resident memory features, and by blocking immunosuppression.


Subject(s)
Colorectal Neoplasms , Hyaluronic Acid , Tumor Microenvironment , Humans , CD8-Positive T-Lymphocytes/pathology , Colorectal Neoplasms/pathology , Hyaluronic Acid/metabolism , Immunotherapy , Sarcoma/pathology , Tumor Microenvironment/physiology
6.
Elife ; 102021 05 18.
Article in English | MEDLINE | ID: mdl-34002695

ABSTRACT

Background: Erythroblast erythroferrone (ERFE) secretion inhibits hepcidin expression by sequestering several bone morphogenetic protein (BMP) family members to increase iron availability for erythropoiesis. Methods: To address whether ERFE functions also in bone and whether the mechanism of ERFE action in bone involves BMPs, we utilize the Erfe-/- mouse model as well as ß-thalassemic (Hbbth3/+) mice with systemic loss of ERFE expression. In additional, we employ comprehensive skeletal phenotyping analyses as well as functional assays in vitro to address mechanistically the function of ERFE in bone. Results: We report that ERFE expression in osteoblasts is higher compared with erythroblasts, is independent of erythropoietin, and functional in suppressing hepatocyte hepcidin expression. Erfe-/- mice display low-bone-mass arising from increased bone resorption despite a concomitant increase in bone formation. Consistently, Erfe-/- osteoblasts exhibit enhanced mineralization, Sost and Rankl expression, and BMP-mediated signaling ex vivo. The ERFE effect on osteoclasts is mediated through increased osteoblastic RANKL and sclerostin expression, increasing osteoclastogenesis in Erfe-/- mice. Importantly, Erfe loss in Hbbth3/+mice, a disease model with increased ERFE expression, triggers profound osteoclastic bone resorption and bone loss. Conclusions: Together, ERFE exerts an osteoprotective effect by modulating BMP signaling in osteoblasts, decreasing RANKL production to limit osteoclastogenesis, and prevents excessive bone loss during expanded erythropoiesis in ß-thalassemia. Funding: YZG acknowledges the support of the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) (R01 DK107670 to YZG and DK095112 to RF, SR, and YZG). MZ acknowledges the support of the National Institute on Aging (U19 AG60917) and NIDDK (R01 DK113627). TY acknowledges the support of the National Institute on Aging (R01 AG71870). SR acknowledges the support of NIDDK (R01 DK090554) and Commonwealth Universal Research Enhancement (CURE) Program Pennsylvania.


Subject(s)
Bone and Bones/metabolism , Cytokines/metabolism , Muscle Proteins/metabolism , Osteoblasts/metabolism , Animals , Bone Development/genetics , Bone Morphogenetic Proteins/metabolism , Cells, Cultured , Cytokines/genetics , Disease Models, Animal , Erythroblasts , Erythropoiesis , Hepcidins , Male , Mice, Inbred C57BL , Muscle Proteins/genetics , beta-Thalassemia/genetics , beta-Thalassemia/metabolism
7.
Oncotarget ; 7(32): 51515-51524, 2016 Aug 09.
Article in English | MEDLINE | ID: mdl-27285987

ABSTRACT

BACKGROUND: Cancer-derived exosomes are involved in metastasis. YKT6 is a SNARE protein that participates in the regulation of exosome production and release, but its role in non-small cell lung cancer (NSCLC) has not been examined. MATERIALS AND METHODS: Ultracentrifugation-purified exosomes from the A549 cell line were studied by CRYO-TEM, nanoparticle tracking analysis and western blot (TSG101 marker). YKT6 was inhibited using a DsiRNA and selected pre-microRNAs. MicroRNAs targeting YKT6 were validated by Renilla/Luciferase assay and western blot. YKT6 expression and its prognostic impact were analyzed in 98 tissue specimens from resected NSCLC patients. RESULTS: Membranous nanosized vesicles (mode size: 128nm) with TSG101 protein were purified from A549 cells. YKT6 inhibition reduced exosome release by 80.9%. We validated miR-134 and miR-135b as miRNAs targeting YKT6, and transfection with the pre-miRNAs also produced a significant reduction in exosome release. The analysis of YKT6 in tumor samples showed that patients with high levels had shorter disease-free and overall survival. CONCLUSIONS: YKT6 is a key molecule in the regulation of exosome release in lung cancer cells and is in turn precisely regulated by miR-134 and miR-135b. Moreover, YKT6 levels impact prognosis of resected NSCLC patients.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Exosomes/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , R-SNARE Proteins/genetics , A549 Cells , Adult , Aged , Aged, 80 and over , Carcinoma, Non-Small-Cell Lung/diagnosis , Carcinoma, Non-Small-Cell Lung/pathology , Cell Proliferation/genetics , Cell Survival/genetics , Female , Gene Expression Regulation, Neoplastic , Humans , Lung Neoplasms/diagnosis , Lung Neoplasms/pathology , Male , MicroRNAs/genetics , Middle Aged , Prognosis
8.
Clin Colorectal Cancer ; 15(4): e175-e182, 2016 12.
Article in English | MEDLINE | ID: mdl-27247088

ABSTRACT

BACKGROUND: The potential benefit of adjuvant chemotherapy in surgically resected patients with stage II colorectal cancer is controversial. The current guidelines, which are based solely on clinical factors, have limited usefulness, and a clear need exists for biomarkers to supplement the clinical information. MicroRNAs (miRNAs) have previously been shown to be useful cancer biomarkers. In the present study, we assessed the usefulness of a miRNA score to help identify the subset of high-risk patients likely to benefit from adjuvant chemotherapy. PATIENTS AND METHODS: Six miRNAs previously identified as prognostic markers in Asian patients (miR-21-5p, miR-20a-5p, miR-103a-3p, miR-106b-5p, miR-143-5p, and miR-215) were studied in tumor samples from 71 white patients with stage II colon cancer. RESULTS: Three miRNAs (miR-103a-3p, miR-143-5p, and miR-215) emerged as independent prognostic markers on multivariate analysis and were used to construct a miRNA-based score that classified patients into high- and low-risk groups. The patients in the high-risk group had significantly shorter disease-free survival compared with their low-risk counterparts (P = .003). The time-dependent receiver operating characteristic curve analysis showed that our 3-miRNA score improved the prediction of outcome when added to the clinical features (P = .023). CONCLUSION: Our 3-miRNA score added valuable prognostic information to the clinical features in stage II colon cancer. Further research in this field could provide useful tools to determine whether adjuvant chemotherapy would benefit patients with stage II colon cancer after surgery.


Subject(s)
Biomarkers, Tumor/genetics , Colonic Neoplasms/pathology , MicroRNAs/biosynthesis , Adult , Aged , Area Under Curve , Colonic Neoplasms/genetics , Colonic Neoplasms/mortality , Disease-Free Survival , Female , Gene Expression Profiling , History, 16th Century , History, 17th Century , Humans , Kaplan-Meier Estimate , Male , MicroRNAs/analysis , Middle Aged , Prognosis , ROC Curve , Risk Factors , Sensitivity and Specificity
9.
PLoS One ; 9(7): e101899, 2014.
Article in English | MEDLINE | ID: mdl-25003366

ABSTRACT

BACKGROUND: Several treatments in non-small cell lung cancer (NSCLC) are histology-dependent, and the need for histology-related markers is increasing. MicroRNAs (miRNAs) are promising molecular markers in multiple cancers and show differences in expression depending on histological subtype. The miRNA family miR-200 has been associated with the regulation of epithelial-mesenchymal (EMT)/mesenchymal-epithelial transition (MET). EMT involves profound phenotypic changes that include the loss of cell-cell adhesion, the loss of cell polarity, and the acquisition of migratory and invasive properties that facilitates metastasis. A dual role for the miR-200 family in the prognosis of several tumors has been related to tumor cell origin. However, the prognostic role and function of miR-200 family in early-stage NSCLC adenocarcinoma and squamous cell carcinoma (SCC) have not been well established. METHODS: miRNA expression was determined using TaqMan assays in 155 tumors from resected NSCLC patients. Functional studies were conducted in three NSCLC cell lines: H23, A-549 and HCC-44. RESULTS: High miR-200c expression was associated with shorter overall survival (OS) in the entire cohort (p = 0.024). High miR-200c (p = 0.0004) and miR-141 (p = 0.009) expression correlated with shorter OS in adenocarcinoma - but not in SCC. In the multivariate analysis, a risk score based on miR-141 and miR-200c expression emerged as an independent prognostic factor for OS in the entire cohort (OR, 2.787; p = 0.033) and in adenocarcinoma patients (OR, 10.649; p = 0.002). Functional analyses showed that miR-200c, was related to mesenchymal-epithelial transition (MET) and affected cell migration and E-cadherin levels, while overexpression of miR-141 reduced KLF6 protein levels and produced an increase of secretion of VEGFA in vitro (H23, p = 0.04; A-549, p = 0.03; HCC-44, p = 0.02) and was associated with higher blood microvessel density in patient tumor samples (p<0.001). CONCLUSION: High miR-141 and miR-200c expression are associated with shorter OS in NSCLC patients with adenocarcinoma through MET and angiogenesis.


Subject(s)
Biomarkers, Tumor , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/mortality , Lung Neoplasms/genetics , Lung Neoplasms/mortality , MicroRNAs/genetics , Adenocarcinoma/genetics , Adenocarcinoma/mortality , Adenocarcinoma/pathology , Adenocarcinoma/therapy , Aged , Aged, 80 and over , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/therapy , Cell Movement/genetics , Female , Gene Expression , Humans , Kruppel-Like Factor 6 , Kruppel-Like Transcription Factors/genetics , Lung Neoplasms/pathology , Lung Neoplasms/therapy , Male , Middle Aged , Neoplasm Recurrence, Local , Neoplasm Staging , Neovascularization, Pathologic/genetics , Prognosis , Proto-Oncogene Proteins/genetics , Risk Factors , Treatment Outcome , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...