Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Heliyon ; 9(12): e22445, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38076038

ABSTRACT

This study evaluated the ultrasound-assisted extraction of phenolic compounds from Guadua angustifolia leaves, along with their optimization using response surface methodology. The effects of two sonication process conditions were determined using a central composite experimental design, with three levels (low, medium, and high) evaluated for time (10, 20, and 30 min) and temperature (20 °C, 35 °C, and 50 °C). A total of 12 experiments with four replicates were conducted at the central point, with the total phenol and flavonoid contents determined using the Folin-Ciocalteu colorimetric method and complexation with AlCl3, respectively. The optimized extract was analyzed using ultra-performance liquid chromatography (UPLC), and the antioxidant capacity of the optimized extract was determined by DPPH• (2,2-Diphenyl-1-Picrylhydrazyl) and ABTS•+ (2,2'-Azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) assays. Extraction at 50 °C for 20 min was found to favor the extraction of phenol and total flavonoids. The experimental validation of the total phenol and flavonoid content produced values of 7.39 mg gallic acid equivalents per gram of dry matter and 1.55 mg quercetin equivalents per gram of dry matter, respectively. These values suggest that the extraction process is reproducible, with a relative standard deviation of 22.9 % and 14.1 %, respectively. The chromatographic profile showed that optimization favored the visualization of phenolic compounds compared to the non-optimized extract. The optimized extract had higher antioxidant capacity than the non-optimized extract, with values of 209.23 and 144.76 µmol Trolox per gram extract for the DPPH• and ABTS•+ techniques, respectively. Thus, the conditions evaluated in the ultrasound-assisted extraction were an efficient technique capable of extracting the maximum amount of phenolic compounds with antioxidant activity from the leaves of G. angustifolia, showing its potential application in various industries.

2.
Integr Comp Biol ; 63(6): 1376-1390, 2023 Dec 29.
Article in English | MEDLINE | ID: mdl-37673672

ABSTRACT

The genus Agave is an ecological keystone of American deserts and both culturally and economically important in Mexico. Agave is a large genus of about 250 species. The radiation of Agave is marked by an initial adaptation to desert environments and then a secondary diversification of species associated with pollinator groups, such as hummingbirds and nocturnal moths. Phylogenetic analyses place Agave subgenus Manfreda, or the "herbaceous agaves," in a monophyletic clade that likely evolved in part as an adaptation to novel pollination vectors. Here, we present a morphological and observational study assessing the evolution of floral form in response to pollinator specialization within this understudied group. We found significant visitation by hummingbirds and nocturnal moths to several species within the Agave subgenus Manfreda. These observations also align with our morphological analyses of floral organs and support the evolution of distinct pollination syndromes. We found that not all floral morphology is consistent within a pollination syndrome, suggesting hidden diversity in the evolution of floral phenotypes in Agave. We also characterize the morphological variation between herbarium and live specimens, demonstrating that special consideration needs to be made when combining these types of data. This work identifies the potential for studying the functional evolution of diverse floral forms within Agave and demonstrates the need to further explore ecological and evolutionary relationships to understand pollinator influence on diversification in the genus.


Subject(s)
Agave , Moths , Animals , Pollination/physiology , Phylogeny , Flowers/anatomy & histology , Moths/genetics , Birds/physiology
3.
J Fungi (Basel) ; 9(9)2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37755010

ABSTRACT

Mycena section Calodontes is macromorphologically distinguished by the collybioid or mycenoid basidiome, which is pink, purple, or violet, and, rarely, reddish-brown or yellowish. It is further characterized by the presence of oxalate crystals in the basal mycelium. The section comprises approximately 40 taxa, of which only five species and one variety exhibit bioluminescence. As part of an extensive study on Mycena sect. Calodontes in Mexico, specimens belonging to this section were collected and subjected to morphological analysis. Sequences from the nuclear internal transcribed spacer (ITS) of nuclear ribosomal DNA, RNA polymerase II large subunit Rpb1 (rpb1), and translation elongation factor-1α (Tef-1α) were generated to infer the relationships within Mycena sect. Calodontes using maximum likelihood and Bayesian inference. The phylogenetic evidence, along with the macro- and micromorphological features, supported the recognition of five new bioluminescent species within Mycena sect. Calodontes. Detailed macro- and micromorphological descriptions, line-drawing illustrations, and light and dark photographs of the new species are provided.

4.
Front Mol Biosci ; 10: 1192088, 2023.
Article in English | MEDLINE | ID: mdl-37293555

ABSTRACT

Bamboo species have traditionally been used as building material and potential source of bioactive substances, as they produce a wide variety of phenolic compounds, including flavonoids and cinnamic acid derivatives that are considered biologically active. However, the effects of growth conditions such as location, altitude, climate, and soil on the metabolome of these species still need to be fully understood. This study aimed to evaluate variations in chemical composition induced by altitudinal gradient (0-3000 m) by utilizing an untargeted metabolomics approach and mapping chemical space using molecular networking analysis. We analyzed 111 samples from 12 bamboo species collected from different altitudinal ranges using liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (LC-QTOF-MS). We used multivariate and univariate statistical analyses to identify the metabolites that showed significant differences in the altitude environments. Additionally, we used the Global Natural Products Social Molecular Networking (GNPS) web platform to perform chemical mapping by comparing the metabolome among the studied species and the reference spectra from its database. The results showed 89 differential metabolites between the altitudinal ranges investigated, wherein high altitude environments significantly increased the profile of flavonoids. While, low altitude environments significantly boosted the profile of cinnamic acid derivatives, particularly caffeoylquinic acids (CQAs). MolNetEnhancer networks confirmed the same differential molecular families already found, revealing metabolic diversity. Overall, this study provides the first report of variations induced by altitude in the chemical profile of bamboo species. The findings may possess fascinating active biological properties, thus offering an alternative use for bamboo.

5.
Ann Bot ; 130(5): 737-747, 2022 11 17.
Article in English | MEDLINE | ID: mdl-35961673

ABSTRACT

BACKGROUND AND AIMS: Shoot ontogenesis in grasses follows a transition from a vegetative phase into a reproductive phase. Current studies provide insight into how branch and spikelet formation occur during the reproductive phase. However, these studies do not explain all the complex diversity of grass inflorescence forms and are mostly focused on model grasses. Moreover, truncated inflorescences of the non-model grass genus Urochloa (Panicoideae) with formation of primary branches have basipetal initiation of branches. Bouteloua species (Chloridoideae) are non-model grasses that form truncated inflorescences of primary branches with apical vestiges of uncertain homology at the tips of branching events and sterile florets above the lowermost fertile floret. Sterile florets are reduced to rudimentary lemmas composed of three large awns diverging from an awn column. Conflict about the awn column identity of this rudimentary lemma is often addressed in species descriptions of this genus. We test if Bouteloua species can display basipetal initiation of branches and explore the identity of vestiges and the awn column of rudimentary lemmas. METHODS: We surveyed the inflorescence ontogeny and branch/awn anatomy of Bouteloua species and compared results with recent ontogenetic studies of chloridoids. KEY RESULTS: Bouteloua arizonica has florets with basipetal maturation. Branches display basipetal branch initiation and maturation. Branch vestiges are formed laterally by meristems during early branching events. The spikelet meristem forms the awn column of rudimentary lemmas. Vestiges and sterile floret awns have anatomical similarities to C4 leaves. CONCLUSIONS: Basipetal initiation of branches is a novel feature for Chloridoideae grasses. Branch vestiges are novel vegetative grass structures. Sterile floret awn columns are likely to be extensions of the rachilla.


Subject(s)
Meristem , Poaceae , Poaceae/anatomy & histology , Inflorescence , Plant Leaves , Plant Proteins
6.
Plants (Basel) ; 11(13)2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35807663

ABSTRACT

Independent evolutionary lineages or species that lack phenotypic variation as an operative criterion for their delimitation are known as cryptic species. However, these have been delimited using other data sources and analysis. The aims of this study are: (1) to evaluate the divergence of the populations of the T. ionantha complex; and (2) to delimit the species using multilocus data, phylogenetic analysis and the coalescent model. Phylogenetic analyses, genetic diversity and population structure, and isolation by distance analysis were performed. A multispecies coalescent analysis to delimit the species was conducted. Phylogenetic analysis showed that T. ionantha is polyphyletic composed of eight evolutionary lineages. Haplotype distribution and genetic differentiation analysis detected strong population structure and high values of genetic differentiation among populations. The positive correlation between genetic differences with geographic distance indicate that the populations are evolving under the model of isolation by distance. The coalescent multispecies analysis performed with starBEAST supports the recognition of eight lineages as different species. Only three out of the eight species have morphological characters good enough to recognize them as different species, while five of them are cryptic species. Tillandsia scaposa and T. vanhyningii are corroborated as independent lineages, and T. ionantha var. stricta changed status to the species level.

7.
PhytoKeys ; 210: 109-134, 2022.
Article in English | MEDLINE | ID: mdl-36760406

ABSTRACT

In this study, we sequenced, assembled, and annotated the plastome of Physaliscordata Mill. and compared it with seven species of the genus Physalis sensu stricto. Sequencing, annotating, and comparing plastomes allow us to understand the evolutionary mechanisms associated with physiological functions, select possible molecular markers, and identify the types of selection that have acted in different regions of the genome. The plastome of P.cordata is 157,000 bp long and presents the typical quadripartite structure with a large single-copy (LSC) region of 87,267 bp and a small single-copy (SSC) region of 18,501 bp, which are separated by two inverted repeat (IRs) regions of 25,616 bp each. These values are similar to those found in the other species, except for P.angulata L. and P.pruinosa L., which presented an expansion of the LSC region and a contraction of the IR regions. The plastome in all Physalis species studied shows variation in the boundary of the regions with three distinct types, the percentage of the sequence identity between coding and non-coding regions, and the number of repetitive regions and microsatellites. Four genes and 10 intergenic regions show promise as molecular markers and eight genes were under positive selection. The maximum likelihood analysis showed that the plastome is a good source of information for phylogenetic inference in the genus, given the high support values and absence of polytomies. In the Physalis plastomes analyzed here, the differences found, the positive selection of genes, and the phylogenetic relationships do not show trends that correspond to the biological or ecological characteristics of the species studied.

8.
Front Plant Sci ; 12: 714763, 2021.
Article in English | MEDLINE | ID: mdl-34650576

ABSTRACT

Guava (Psidium guajava L., Myrtaceae) is a Neotropical fruit that is widely consumed around the world. However, its evolutionary history and domestication process are unknown. Here we examine available ecological, taxonomic, genetic, archeological, and historical evidence about guava. Guava needs full sunlight, warm temperatures, and well-distributed rainfall throughout the year to grow, but tolerates drought. Zoochory and anthropochory are the main forms of dispersal. Guava's phylogenetic relationships with other species of the genus Psidium are unclear. A group of six species that share several morphological characteristics are tentatively accepted as the Psidium guajava complex. DNA analyses are limited to the characterization of crop genetic diversity within localities and do not account for possible evolutionary and domestication scenarios. A significant amount of archeological information exists, with a greater number and older records in South America than in Mesoamerica, where there are also numerous historical records. From this information, we propose that: (1) the guava ancestor may have originated during the Middle or Late Miocene, and the savannas and semi-deciduous forests of South America formed during the Late Pleistocene would have been the most appropriate ecosystems for its growth, (2) the megafauna were important dispersers for guava, (3) dispersal by humans during the Holocene expanded guava's geographic range, including to the southwestern Amazonian lowlands, (4) where its domestication may have started, and (5) with the European conquest of the Neotropics, accompanied by their domestic animals, new contact routes between previously remote guava populations were established. These proposals could direct future research on the evolutionary and domestication process of guava.

9.
BMC Evol Biol ; 20(1): 94, 2020 07 31.
Article in English | MEDLINE | ID: mdl-32736514

ABSTRACT

An amendment to this paper has been published and can be accessed via the original article.

10.
BMC Evol Biol ; 20(1): 44, 2020 04 19.
Article in English | MEDLINE | ID: mdl-32306974

ABSTRACT

BACKGROUND: The Mexican hand tree or Canac (Chiranthodendron pentadactylon) is a temperate tree species of cloud and pine-oak forests of southern Mexico and Guatemala. Its characteristic hand-shaped flower is used in folk medicine and has constituted the iconic symbol of the Sociedad Botánica de México since 1940. Here, the evolutionary history of this species was estimated through phylogeographic analyses of nuclear DNA sequences obtained through restriction site associated DNA sequencing and ecological niche modeling. Total genomic DNA was extracted from leaf samples obtained from a representative number (5 to 10 per sampling site) of individuals distributed along the species geographic range. In Mexico, population is comprised by spatially isolated individuals which may follow the trends of cloud forest fragmentation. By contrast, in Guatemala Chiranthodendron may constitute a canopy dominant species near the Acatenango volcano. The distributional range of this species encompasses geographic provinces separated by the Isthmus of Tehuantepec. The objectives of the study were to: (i) estimate its genetic structure to define whether the observed range disjunction exerted by the Isthmus of Tehuantepec translates into separate populations, (ii) link population divergence timing and demographic trends to historical climate change, and (iii) test hypotheses related to Pleistocene refugia. RESULTS: Patterns of genetic diversity indicated high levels of genetic differentiation between populations separated by the Isthmus. The western and eastern population diverged approximately 0.873 Million years ago (Ma). Demographic analyses supported a simultaneous split from an ancestral population and rapid expansion from a small stock approximately 0.2 Ma corresponding to a glacial period. The populations have remained stable since the LIG (130 Kilo years ago (Ka)). Species distribution modelling (SDM) predicted a decrease in potential distribution in the Last Interglacial (LIG) and an increase during the Last Glacial Maximum (LGM) (22 Ka), Mid-Holocene (6 Ka) and present times. CONCLUSIONS: Divergence time estimations support the hypothesis that populations represent Quaternary relict elements of a species with broader and northernmost distribution. Pleistocene climatic shifts exerted major influence on the distribution of populations allowing dispersion during episodes of suitable climatic conditions and structuring during the first interglacial with a time period length of 100 Kilo years (Kyr) and the vicariant influence of the Isthmus. Limited demographic expansion and population connectivity during the LGM supports the moist forest hypothesis model.


Subject(s)
Biological Evolution , Malvaceae/classification , Rainforest , Trees/classification , Cell Nucleus , Climate Change , DNA, Plant , Ecosystem , Humans , Malvaceae/genetics , Mexico , Phylogeography , Sequence Analysis, DNA , Trees/genetics
11.
Zootaxa ; 4634(1): zootaxa.4634.1.1, 2019 Jul 12.
Article in English | MEDLINE | ID: mdl-31712493

ABSTRACT

A synopsis of the 13 species of Phyllogomphoides Belle, 1970 known to occur within Mexico is presented. Taxonomic keys for males are based primarily on morphology of anterior and posterior hamules, caudal appendages and of the vulvar lamina in females and includes full descriptions for each species accompanied by high-resolution photographs, drawings, comparative diagnostic notes, natural history and distribution maps. Females of P. danieli González Novelo, 1990 and P. nayaritensis Belle, 1987 are described for the first time. Moreover, new records for P. albrighti (Needham, 1950) for the states of Guerrero; P. danieli González Novelo, 1990 for Colima, Guerrero and San Luis Potosí; P. duodentatus Donnelly, 1979 for Oaxaca; P. luisi González Novelo, 1990 for Nayarit, and P. pugnifer Donnelly, 1979 for San Luis Potosí, are also provided.


Subject(s)
Coleoptera , Odonata , Spiders , Animal Distribution , Animals , Female , Male , Mexico
12.
Mol Phylogenet Evol ; 138: 17-30, 2019 09.
Article in English | MEDLINE | ID: mdl-31129351

ABSTRACT

The biogeographical history of Mesoamerican cloud forests is complex, encompassing a diverse and heterogeneous mixture of species with temperate and tropical origins. The dynamic geological landscape and climate change from the Miocene to the Pleistocene affected the distributions and composition of cloud forests in the region, and contributed to divergence events at different time scales. We assessed genetic variation of 29 populations of P. matudae, and closely related P. guatemalensis and P. oleifolius (Podocarpaceae) by sequencing 255 samples of the psbA-trnH and trnL-F intergenic spacer regions across the species ranges. We conducted phylogenetic, population and spatial genetic analyses as well as divergence time estimation and ecological niche modelling (ENM) to test the generality of demographic and genetic scenarios for cloud forest-adapted species. The results revealed genetic differentiation among species, with some individuals of P. oleifolius and P. guatemalensis placed in the P. matudae group and some P. oleifolius in the P. guatemalensis group. Predictions of ENMs under past climatic conditions and a strong signal of spatial expansion suggest that the highland P. matudae and P. oleifolius populations experienced expansions into lower elevation during the Last Glacial Maximum (LGM). Contrary to predictions by the two precipitation models and elevational ups and downs for cloud forest taxa during the LGM, genetic differentiation and predicted distribution of suitable habitat support the hypotheses that P. matudae and P. oleifolius remained in situ during the LGM primarily within the current fragmented distribution of the cloud forest and spread into the lowlands during the LGM, whereas the distribution of suitable habitat for P. guatemalensis had no major changes upwards from the Last Inter Glacial (LIG) to current conditions.


Subject(s)
Genetic Variation , Tracheophyta/genetics , Americas , Ecosystem , Genetics, Population , Haplotypes/genetics , Phylogeny , Phylogeography , Principal Component Analysis , Time Factors
13.
Ecol Evol ; 9(4): 1623-1637, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30847060

ABSTRACT

Body mass has been considered one of the most critical organismal traits, and its role in many ecological processes has been widely studied. In hummingbirds, body mass has been linked to ecological features such as foraging performance, metabolic rates, and cost of flying, among others. We used an evolutionary approach to test whether body mass is a good predictor of two of the main ecological features of hummingbirds: their abundances and behavioral dominance. To determine whether a species was abundant and/or behaviorally dominant, we used information from the literature on 249 hummingbird species. For abundance, we classified a species as "plentiful" if it was described as the most abundant species in at least part of its geographic distribution, while we deemed a species to be "behaviorally dominant" when it was described as pugnacious (notably aggressive). We found that plentiful hummingbird species had intermediate body masses and were more phylogenetically related to each other than expected by chance. Conversely, behaviorally dominant species tended to have larger body masses and showed a random pattern of distribution in the phylogeny. Additionally, small-bodied hummingbird species were not considered plentiful by our definition and did not exhibit behavioral dominance. These results suggest a link between body mass, abundance, and behavioral dominance in hummingbirds. Our findings indicate the existence of a body mass range associated with the capacity of hummingbird species to be plentiful, behaviorally dominant, or to show both traits. The mechanisms behind these relationships are still unclear; however, our results provide support for the hypothesis that body mass is a supertrait that explains abundance and behavioral dominance in hummingbirds.

14.
Mol Phylogenet Evol ; 122: 80-94, 2018 05.
Article in English | MEDLINE | ID: mdl-29407482

ABSTRACT

The predominantly Asian tribe Miliuseae (Annonaceae) includes over 37 Neotropical species that are mainly distributed across Mesoamerica, from southern Mexico to northern Colombia. The tremendous ecological and morphological diversity of this clade, including ramiflory, cauliflory, flagelliflory, and clonality, suggests adaptive radiation. Despite the spectacular phenotypic divergence of this clade, little is known about its phylogenetic and evolutionary history. In this study we used a nuclear DNA marker and seven chloroplast markers, and maximum parsimony, maximum likelihood and Bayesian inference methods to reconstruct a comprehensive time-calibrated phylogeny of tribe Miliuseae, especially focusing on the Desmopsis-Stenanona clade. We also perform ancestral area reconstructions to infer the biogeographic history of this group. Finally, we use ecological niche modeling, lineage distribution models, and niche overlap tests to assess whether geographic isolation and ecological specialization influenced the diversification of lineages within this clade. We reconstructed a monophyletic Miliuseae that is divided into two strongly supported clades: (i) a Sapranthus-Tridimeris clade and (ii) a Desmopsis-Stenanona clade. The colonization of the Neotropics and subsequent diversification of Neotropical Miliuseae seems to have been associated with the expansion of the boreotropical forests during the late Eocene and their subsequent fragmentation and southern displacement. Further speciation within Neotropical Miliuseae out of the Maya block seems to have occurred during the last 15 million years. Lastly, the geographic structuring of major lineages of the Desmopsis-Stenanona clade seems to have followed a climatic gradient, supporting the hypothesis that morphological differentiation between closely related species resulted from both long-term isolation between geographic ranges and adaptation to environmental conditions.


Subject(s)
Annonaceae/classification , Phylogeny , Annonaceae/genetics , Bayes Theorem , Biological Evolution , Cell Nucleus/genetics , Central America , Climate , DNA, Plant/chemistry , DNA, Plant/isolation & purification , DNA, Plant/metabolism , Forests , Sequence Analysis, DNA
15.
Mol Phylogenet Evol ; 111: 185-195, 2017 06.
Article in English | MEDLINE | ID: mdl-28392486

ABSTRACT

Species delimitation is a major topic in systematics. Species delimitation methods based on molecular data have become more common since this approach provides insights about species identification via levels of gene flow, the degree of hybridization and phylogenetic relationships. Also, combining multilocus mitochondrial and nuclear DNA leads to more reliable conclusions about species limits. Coalescent-based species delimitation methods explicitly reveal separately evolving lineages using probabilistic approaches and testing the delimitation hypotheses for several species. Within a multispecies, multilocus, coalescent framework, we were able to clarify taxonomic uncertainties within S. cyanostictus, an endangered lizard that inhabits a narrow strip of the Chihuahuan Desert in Mexico. We included, for the first time in a phylogenetic analysis, lizards from the three populations of S. cyanostictus recognized so far (East Coahuila, West Coahuila and Nuevo León). Phylogenetic analysis corroborates the hypothesis of two separately evolving lineages, i.e. the East and West Coahuila populations, as proposed in a previous study. We also found a distant phylogenetic relationship between the lizards from Nuevo León and those of East and West Coahuila. Finally, based on the species delimitation results, we propose and describe a new species of Sceloporus: S. gadsdeni sp. nov.


Subject(s)
Genetic Loci , Lizards/genetics , Phylogeny , Animals , Bayes Theorem , Genetic Variation , Male , Mexico , Nucleotides/genetics , Species Specificity
16.
BMC Genomics ; 17: 384, 2016 05 20.
Article in English | MEDLINE | ID: mdl-27206631

ABSTRACT

BACKGROUND: Next-generation sequencing now allows for total RNA extracts to be sequenced in non-model organisms such as bamboos, an economically and ecologically important group of grasses. Bamboos are divided into three lineages, two of which are woody perennials with bisexual flowers, which undergo gregarious monocarpy. The third lineage, which are herbaceous perennials, possesses unisexual flowers that undergo annual flowering events. RESULTS: Transcriptomes were assembled using both reference-based and de novo methods. These two methods were tested by characterizing transcriptome content using sequence alignment to previously characterized reference proteomes and by identifying Pfam domains. Because of the striking differences in floral morphology and phenology between the herbaceous and woody bamboo lineages, MADS-box genes, transcription factors that control floral development and timing, were characterized and analyzed in this study. Transcripts were identified using phylogenetic methods and categorized as A, B, C, D or E-class genes, which control floral development, or SOC or SVP-like genes, which control the timing of flowering events. Putative nuclear orthologues were also identified in bamboos to use as phylogenetic markers. CONCLUSIONS: Instances of gene copies exhibiting topological patterns that correspond to shared phenotypes were observed in several gene families including floral development and timing genes. Alignments and phylogenetic trees were generated for 3,878 genes and for all genes in a concatenated analysis. Both the concatenated analysis and those of 2,412 separate gene trees supported monophyly among the woody bamboos, which is incongruent with previous phylogenetic studies using plastid markers.


Subject(s)
Poaceae/genetics , Transcriptome , Computational Biology/methods , Evolution, Molecular , Gene Expression Profiling , Gene Expression Regulation, Plant , High-Throughput Nucleotide Sequencing , Phylogeny , Poaceae/classification
17.
BMC Evol Biol ; 16: 78, 2016 Apr 12.
Article in English | MEDLINE | ID: mdl-27071983

ABSTRACT

BACKGROUND: Ecological adaptation to host taxa is thought to result in mistletoe speciation via race formation. However, historical and ecological factors could also contribute to explain genetic structuring particularly when mistletoe host races are distributed allopatrically. Using sequence data from nuclear (ITS) and chloroplast (trnL-F) DNA, we investigate the genetic differentiation of 31 Psittacanthus schiedeanus (Loranthaceae) populations across the Mesoamerican species range. We conducted phylogenetic, population and spatial genetic analyses on 274 individuals of P. schiedeanus to gain insight of the evolutionary history of these populations. Species distribution modeling, isolation with migration and Bayesian inference methods were used to infer the evolutionary transition of mistletoe invasion, in which evolutionary scenarios were compared through posterior probabilities. RESULTS: Our analyses revealed shallow levels of population structure with three genetic groups present across the sample area. Nine haplotypes were identified after sequencing the trnL-F intergenic spacer. These haplotypes showed phylogeographic structure, with three groups with restricted gene flow corresponding to the distribution of individuals/populations separated by habitat (cloud forest localities from San Luis Potosí to northwestern Oaxaca and Chiapas, localities with xeric vegetation in central Oaxaca, and localities with tropical deciduous forests in Chiapas), with post-glacial population expansions and potentially corresponding to post-glacial invasion types. Similarly, 44 ITS ribotypes suggest phylogeographic structure, despite the fact that most frequent ribotypes are widespread indicating effective nuclear gene flow via pollen. Gene flow estimates, a significant genetic signal of demographic expansion, and range shifts under past climatic conditions predicted by species distribution modeling suggest post-glacial invasion of P. schiedeanus mistletoes to cloud forests. However, Approximate Bayesian Computation (ABC) analyses strongly supported a scenario of simultaneous divergence among the three groups isolated recently. CONCLUSIONS: Our results provide support for the predominant role of isolation and environmental factors in driving genetic differentiation of Mesoamerican parrot-flower mistletoes. The ABC results are consistent with a scenario of post-glacial mistletoe invasion, independent of host identity, and that habitat types recently isolated P. schiedeanus populations, accumulating slight phenotypic differences among genetic groups due to recent migration across habitats. Under this scenario, climatic fluctuations throughout the Pleistocene would have altered the distribution of suitable habitat for mistletoes throughout Mesoamerica leading to variation in population continuity and isolation. Our findings add to an understanding of the role of recent isolation and colonization in shaping cloud forest communities in the region.


Subject(s)
Forests , Loranthaceae/genetics , Bayes Theorem , Biological Evolution , Climate Change , Ecosystem , Gene Flow , Genetic Variation , Haplotypes , Humans , Loranthaceae/classification , Models, Biological , Phylogeny , Phylogeography
18.
Mol Phylogenet Evol ; 93: 261-73, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26265258

ABSTRACT

The Neotropical woody bamboo genus Otatea is one of five genera in the subtribe Guaduinae. Of the eight described Otatea species, seven are endemic to Mexico and one is also distributed in Central and South America. Otatea acuminata has the widest geographical distribution of the eight species, and two of its recently collected populations do not match the known species morphologically. Parametric and non-parametric methods were used to delimit the species in Otatea using five chloroplast markers, one nuclear marker, and morphological characters. The parametric coalescent method and the non-parametric analysis supported the recognition of two distinct evolutionary lineages. Molecular clock estimates were used to estimate divergence times in Otatea. The results for divergence time in Otatea estimated the origin of the speciation events from the Late Miocene to Late Pleistocene. The species delimitation analyses (parametric and non-parametric) identified that the two populations of O. acuminata from Chiapas and Hidalgo are from two separate evolutionary lineages and these new species have morphological characters that separate them from O. acuminata s.s. The geological activity of the Trans-Mexican Volcanic Belt and the Isthmus of Tehuantepec may have isolated populations and limited the gene flow between Otatea species, driving speciation. Based on the results found here, I describe Otatea rzedowskiorum and Otatea victoriae as two new species, morphologically different from O. acuminata.


Subject(s)
Bambusa/classification , Bambusa/anatomy & histology , Bambusa/genetics , Bayes Theorem , DNA, Chloroplast/genetics , Ecosystem , Gene Flow , Genetic Speciation , Likelihood Functions , Mexico , Phylogeny , Sequence Analysis, DNA , Statistics, Nonparametric
19.
Mol Phylogenet Evol ; 91: 123-34, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26048705

ABSTRACT

Several hypotheses have been suggested to explain the origin of fleshy fruit in monocots. One is that they originated in the understory of tropical regions and another is that fleshy fruit originated in tropical rainforests where high year-round rainfall implies that seasonality is not a limiting factor. Here we identify the time of origin and ecological preferences of woody bamboos to understand the evolution of the fleshy fruit known as the bacoid caryopsis. Bayesian Inference, Maximum Likelihood and molecular dating analyses were run based on eight plastid and two nuclear regions for 68 bamboo species. Climate data and soil parameters were gathered for 464 localities for these species. The ancestral type of caryopsis was reconstructed by parsimony. According to these analyses the bacoid caryopsis may have evolved independently seven times from the Late Miocene to the Early Pliocene and Mid-Pliocene to Mid-Pleistocene via convergent evolution. Our results suggest that in bamboos neither current climatic variables nor soil parameters were significantly correlated with the appearance of this type of fruit, nor do they have a phylogenetic signal. It is remarkable, however, that the first appearance of the bacoid caryopsis in bamboos might be associated with historical preferences for warmer and wetter climate during the Miocene. Further research is needed to identify whether other factors, such as vivipary or dispersal by small animals, rather than climate, could be responsible for the evolution of this trait in woody bamboos.


Subject(s)
Biological Evolution , Poaceae/physiology , Bayes Theorem , Climate , Fruit/genetics , Phylogeny , Poaceae/classification , Poaceae/genetics , Soil , Wood
20.
J Anim Ecol ; 84(5): 1396-404, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25919065

ABSTRACT

1. Predicting the diet diversity of animals is important to basic and applied ecology. Knowledge of diet diversity in animals helps us understand niche partitioning, functional diversity and ecosystem services such as pollination, pest control and seed dispersal. 2. There is a negative relationship between the length of the digestive tract and diet diversity in animals; however, the role of digestive physiology in determining diet diversity has been ignored. This is especially important in vertebrates with powered flight because, unlike non-flying vertebrates, they have limitations that may constrain gut size. 3. Here, we evaluate the relationship between digestive capacity and diet diversity in Carollinae and Stenodermatinae frugivorous bats. These bats disperse the seeds of plants that are key to Neotropical forest regeneration. 4. Our results show that digestive capacity is a good predictor of diet diversity in Carollinae and Stenodermatinae frugivorous bats (R(2) = 0·77). 5. Surprisingly, the most phylogenetically closely related species were not similar in their digestive capacity or diet diversity. The lack of a phylogenetic signal for the traits evaluated implies differences in digestive physiology and diet in closely related species. 6. Our results highlight the predictive usefulness of digestive physiology for understanding the feeding ecology of animals.


Subject(s)
Chiroptera/physiology , Diet , Digestion , Animals , Central America , Fruit , Mexico , Phylogeny , South America , Tropical Climate
SELECTION OF CITATIONS
SEARCH DETAIL
...